1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
SUBROUTINE FB01SD( JOBX, MULTAB, MULTRC, N, M, P, SINV, LDSINV,
$ AINV, LDAINV, B, LDB, RINV, LDRINV, C, LDC,
$ QINV, LDQINV, X, RINVY, Z, E, TOL, IWORK,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To calculate a combined measurement and time update of one
C iteration of the time-varying Kalman filter. This update is given
C for the square root information filter, using dense matrices.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBX CHARACTER*1
C Indicates whether X is to be computed as follows:
C i+1
C = 'X': X is computed and stored in array X;
C i+1
C = 'N': X is not required.
C i+1
C
C MULTAB CHARACTER*1 -1
C Indicates how matrices A and B are to be passed to
C i i
C the routine as follows: -1
C = 'P': Array AINV must contain the matrix A and the
C -1 i
C array B must contain the product A B ;
C i i
C = 'N': Arrays AINV and B must contain the matrices
C as described below.
C
C MULTRC CHARACTER*1 -1/2
C Indicates how matrices R and C are to be passed to
C i+1 i+1
C the routine as follows:
C = 'P': Array RINV is not used and the array C must
C -1/2
C contain the product R C ;
C i+1 i+1
C = 'N': Arrays RINV and C must contain the matrices
C as described below.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e., the order of the
C -1 -1
C matrices S and A . N >= 0.
C i i
C
C M (input) INTEGER
C The actual input dimension, i.e., the order of the matrix
C -1/2
C Q . M >= 0.
C i
C
C P (input) INTEGER
C The actual output dimension, i.e., the order of the matrix
C -1/2
C R . P >= 0.
C i+1
C
C SINV (input/output) DOUBLE PRECISION array, dimension
C (LDSINV,N)
C On entry, the leading N-by-N upper triangular part of this
C -1
C array must contain S , the inverse of the square root
C i
C (right Cholesky factor) of the state covariance matrix
C P (hence the information square root) at instant i.
C i|i
C On exit, the leading N-by-N upper triangular part of this
C -1
C array contains S , the inverse of the square root (right
C i+1
C Cholesky factor) of the state covariance matrix P
C i+1|i+1
C (hence the information square root) at instant i+1.
C The strict lower triangular part of this array is not
C referenced.
C
C LDSINV INTEGER
C The leading dimension of array SINV. LDSINV >= MAX(1,N).
C
C AINV (input) DOUBLE PRECISION array, dimension (LDAINV,N)
C -1
C The leading N-by-N part of this array must contain A ,
C i
C the inverse of the state transition matrix of the discrete
C system at instant i.
C
C LDAINV INTEGER
C The leading dimension of array AINV. LDAINV >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain B ,
C -1 i
C the input weight matrix (or the product A B if
C i i
C MULTAB = 'P') of the discrete system at instant i.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C RINV (input) DOUBLE PRECISION array, dimension (LDRINV,*)
C If MULTRC = 'N', then the leading P-by-P upper triangular
C -1/2
C part of this array must contain R , the inverse of the
C i+1
C covariance square root (right Cholesky factor) of the
C output (measurement) noise (hence the information square
C root) at instant i+1.
C The strict lower triangular part of this array is not
C referenced.
C Otherwise, RINV is not referenced and can be supplied as a
C dummy array (i.e., set parameter LDRINV = 1 and declare
C this array to be RINV(1,1) in the calling program).
C
C LDRINV INTEGER
C The leading dimension of array RINV.
C LDRINV >= MAX(1,P) if MULTRC = 'N';
C LDRINV >= 1 if MULTRC = 'P'.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain C ,
C -1/2 i+1
C the output weight matrix (or the product R C if
C i+1 i+1
C MULTRC = 'P') of the discrete system at instant i+1.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C QINV (input/output) DOUBLE PRECISION array, dimension
C (LDQINV,M)
C On entry, the leading M-by-M upper triangular part of this
C -1/2
C array must contain Q , the inverse of the covariance
C i
C square root (right Cholesky factor) of the input (process)
C noise (hence the information square root) at instant i.
C On exit, the leading M-by-M upper triangular part of this
C -1/2
C array contains (QINOV ) , the inverse of the covariance
C i
C square root (right Cholesky factor) of the process noise
C innovation (hence the information square root) at
C instant i.
C The strict lower triangular part of this array is not
C referenced.
C
C LDQINV INTEGER
C The leading dimension of array QINV. LDQINV >= MAX(1,M).
C
C X (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain X , the estimated
C i
C filtered state at instant i.
C On exit, if JOBX = 'X', and INFO = 0, then this array
C contains X , the estimated filtered state at
C i+1
C instant i+1.
C On exit, if JOBX = 'N', or JOBX = 'X' and INFO = 1, then
C -1
C this array contains S X .
C i+1 i+1
C
C RINVY (input) DOUBLE PRECISION array, dimension (P)
C -1/2
C This array must contain R Y , the product of the
C i+1 i+1
C -1/2
C upper triangular matrix R and the measured output
C i+1
C vector Y at instant i+1.
C i+1
C
C Z (input) DOUBLE PRECISION array, dimension (M)
C This array must contain Z , the mean value of the state
C i
C process noise at instant i.
C
C E (output) DOUBLE PRECISION array, dimension (P)
C This array contains E , the estimated error at instant
C i+1
C i+1.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If JOBX = 'X', then TOL is used to test for near
C -1
C singularity of the matrix S . If the user sets
C i+1
C TOL > 0, then the given value of TOL is used as a
C lower bound for the reciprocal condition number of that
C matrix; a matrix whose estimated condition number is less
C than 1/TOL is considered to be nonsingular. If the user
C sets TOL <= 0, then an implicitly computed, default
C tolerance, defined by TOLDEF = N*N*EPS, is used instead,
C where EPS is the machine precision (see LAPACK Library
C routine DLAMCH).
C Otherwise, TOL is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C where LIWORK = N if JOBX = 'X',
C and LIWORK = 1 otherwise.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK. If INFO = 0 and JOBX = 'X', DWORK(2) returns
C an estimate of the reciprocal of the condition number
C -1
C (in the 1-norm) of S .
C i+1
C
C LDWORK The length of the array DWORK.
C LDWORK >= MAX(1,N*(N+2*M)+3*M,(N+P)*(N+1)+2*N),
C if JOBX = 'N';
C LDWORK >= MAX(2,N*(N+2*M)+3*M,(N+P)*(N+1)+2*N,3*N),
C if JOBX = 'X'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; -1
C = 1: if JOBX = 'X' and the matrix S is singular,
C i+1 -1
C i.e., the condition number estimate of S (in the
C i+1
C -1 -1/2
C 1-norm) exceeds 1/TOL. The matrices S , Q
C i+1 i
C and E have been computed.
C
C METHOD
C
C The routine performs one recursion of the square root information
C filter algorithm, summarized as follows:
C
C | -1/2 -1/2 | | -1/2 |
C | Q 0 Q Z | | (QINOV ) * * |
C | i i i | | i |
C | | | |
C | -1 -1 -1 -1 -1 | | -1 -1 |
C T | S A B S A S X | = | 0 S S X |
C | i i i i i i i | | i+1 i+1 i+1|
C | | | |
C | -1/2 -1/2 | | |
C | 0 R C R Y | | 0 0 E |
C | i+1 i+1 i+1 i+1| | i+1 |
C
C (Pre-array) (Post-array)
C
C where T is an orthogonal transformation triangularizing the
C -1/2
C pre-array, (QINOV ) is the inverse of the covariance square
C i
C root (right Cholesky factor) of the process noise innovation
C (hence the information square root) at instant i, and E is the
C i+1
C estimated error at instant i+1.
C
C The inverse of the corresponding state covariance matrix P
C i+1|i+1
C (hence the information matrix I) is then factorized as
C
C -1 -1 -1
C I = P = (S )' S
C i+1|i+1 i+1|i+1 i+1 i+1
C
C and one combined time and measurement update for the state is
C given by X .
C i+1
C
C The triangularization is done entirely via Householder
C transformations exploiting the zero pattern of the pre-array.
C
C REFERENCES
C
C [1] Anderson, B.D.O. and Moore, J.B.
C Optimal Filtering.
C Prentice Hall, Englewood Cliffs, New Jersey, 1979.
C
C [2] Verhaegen, M.H.G. and Van Dooren, P.
C Numerical Aspects of Different Kalman Filter Implementations.
C IEEE Trans. Auto. Contr., AC-31, pp. 907-917, Oct. 1986.
C
C [3] Vanbegin, M., Van Dooren, P., and Verhaegen, M.H.G.
C Algorithm 675: FORTRAN Subroutines for Computing the Square
C Root Covariance Filter and Square Root Information Filter in
C Dense or Hessenberg Forms.
C ACM Trans. Math. Software, 15, pp. 243-256, 1989.
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately
C
C 3 2 2 2
C (7/6)N + N x (7/2 x M + P) + N x (1/2 x P + M )
C
C operations and is backward stable (see [2]).
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C Supersedes Release 2.0 routine FB01GD by M. Vanbegin,
C P. Van Dooren, and M.H.G. Verhaegen.
C
C REVISIONS
C
C February 20, 1998, November 20, 2003, February 14, 2004.
C
C KEYWORDS
C
C Kalman filtering, optimal filtering, orthogonal transformation,
C recursive estimation, square-root filtering, square-root
C information filtering.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBX, MULTAB, MULTRC
INTEGER INFO, LDAINV, LDB, LDC, LDQINV, LDRINV, LDSINV,
$ LDWORK, M, N, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION AINV(LDAINV,*), B(LDB,*), C(LDC,*), DWORK(*),
$ E(*), QINV(LDQINV,*), RINV(LDRINV,*), RINVY(*),
$ SINV(LDSINV,*), X(*), Z(*)
C .. Local Scalars ..
LOGICAL LJOBX, LMULTA, LMULTR
INTEGER I, I12, I13, I21, I23, IJ, ITAU, JWORK, LDW, M1,
$ N1, NP, WRKOPT
DOUBLE PRECISION RCOND
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL DDOT, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEQRF, DLACPY, DORMQR,
$ DTRMM, DTRMV, MB02OD, MB04KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
NP = N + P
N1 = MAX( 1, N )
M1 = MAX( 1, M )
INFO = 0
LJOBX = LSAME( JOBX, 'X' )
LMULTA = LSAME( MULTAB, 'P' )
LMULTR = LSAME( MULTRC, 'P' )
C
C Test the input scalar arguments.
C
IF( .NOT.LJOBX .AND. .NOT.LSAME( JOBX, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LMULTA .AND. .NOT.LSAME( MULTAB, 'N' ) ) THEN
INFO = -2
ELSE IF( .NOT.LMULTR .AND. .NOT.LSAME( MULTRC, 'N' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( LDSINV.LT.N1 ) THEN
INFO = -8
ELSE IF( LDAINV.LT.N1 ) THEN
INFO = -10
ELSE IF( LDB.LT.N1 ) THEN
INFO = -12
ELSE IF( LDRINV.LT.1 .OR. ( .NOT.LMULTR .AND. LDRINV.LT.P ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( LDQINV.LT.M1 ) THEN
INFO = -18
ELSE IF( ( LJOBX .AND. LDWORK.LT.MAX( 2, N*(N + 2*M) + 3*M,
$ NP*(N + 1) + 2*N, 3*N ) )
$ .OR.
$ ( .NOT.LJOBX .AND. LDWORK.LT.MAX( 1, N*(N + 2*M) + 3*M,
$ NP*(N + 1) + 2*N ) ) ) THEN
INFO = -26
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'FB01SD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, P ).EQ.0 ) THEN
IF ( LJOBX ) THEN
DWORK(1) = TWO
DWORK(2) = ONE
ELSE
DWORK(1) = ONE
END IF
RETURN
END IF
C
C Construction of the needed part of the pre-array in DWORK.
C To save workspace, only the blocks (1,3), (2,1)-(2,3), (3,2), and
C (3,3) will be constructed when needed as shown below.
C
C Storing SINV x AINV and SINV x AINV x B in the (1,1) and (1,2)
C blocks of DWORK, respectively.
C The variables called Ixy define the starting positions where the
C (x,y) blocks of the pre-array are initially stored in DWORK.
C Workspace: need N*(N+M).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
LDW = N1
I21 = N*N + 1
C
CALL DLACPY( 'Full', N, N, AINV, LDAINV, DWORK, LDW )
IF ( LMULTA ) THEN
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(I21), LDW )
ELSE
CALL DGEMM( 'No transpose', 'No transpose', N, M, N, ONE,
$ DWORK, LDW, B, LDB, ZERO, DWORK(I21), LDW )
END IF
CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, N+M,
$ ONE, SINV, LDSINV, DWORK, LDW )
C
C Storing the process noise mean value in (1,3) block of DWORK.
C Workspace: need N*(N+M) + M.
C
I13 = N*( N + M ) + 1
C
CALL DCOPY( M, Z, 1, DWORK(I13), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', M, QINV, LDQINV,
$ DWORK(I13), 1 )
C
C Computing SINV x X in X.
C
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N, SINV, LDSINV,
$ X, 1 )
C
C Triangularization (2 steps).
C
C Step 1: annihilate the matrix SINV x AINV x B.
C Workspace: need N*(N+2*M) + 3*M.
C
I12 = I13 + M
ITAU = I12 + M*N
JWORK = ITAU + M
C
CALL MB04KD( 'Full', M, N, N, QINV, LDQINV, DWORK(I21), LDW,
$ DWORK, LDW, DWORK(I12), M1, DWORK(ITAU),
$ DWORK(JWORK) )
WRKOPT = MAX( 1, N*( N + 2*M ) + 3*M )
C
IF ( N.EQ.0 ) THEN
CALL DCOPY( P, RINVY, 1, E, 1 )
IF ( LJOBX )
$ DWORK(2) = ONE
DWORK(1) = WRKOPT
RETURN
END IF
C
C Apply the transformations to the last column of the pre-array.
C (Only the updated (2,3) block is now needed.)
C
IJ = I21
C
DO 10 I = 1, M
CALL DAXPY( N, -DWORK(ITAU+I-1)*( DWORK(I13+I-1) +
$ DDOT( N, DWORK(IJ), 1, X, 1 ) ),
$ DWORK(IJ), 1, X, 1 )
IJ = IJ + N
10 CONTINUE
C
C Now, the workspace for SINV x AINV x B, as well as for the updated
C (1,2) block of the pre-array, are no longer needed.
C Move the computed (2,3) block of the pre-array in the (1,2) block
C position of DWORK, to save space for the following computations.
C Then, adjust the implicitly defined leading dimension of DWORK,
C to make space for storing the (3,2) and (3,3) blocks of the
C pre-array.
C Workspace: need (N+P)*(N+1).
C
CALL DCOPY( N, X, 1, DWORK(I21), 1 )
LDW = MAX( 1, NP )
C
DO 30 I = N + 1, 1, -1
DO 20 IJ = N, 1, -1
DWORK(NP*(I-1)+IJ) = DWORK(N*(I-1)+IJ)
20 CONTINUE
30 CONTINUE
C
C Copy of RINV x C in the (2,1) block of DWORK.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(N+1), LDW )
IF ( .NOT.LMULTR )
$ CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', P, N,
$ ONE, RINV, LDRINV, DWORK(N+1), LDW )
C
C Copy the inclusion measurement in the (2,2) block of DWORK.
C
I21 = NP*N + 1
I23 = I21 + N
CALL DCOPY( P, RINVY, 1, DWORK(I23), 1 )
WRKOPT = MAX( WRKOPT, NP*( N + 1 ) )
C
C Step 2: QR factorization of the first block column of the matrix
C
C [ SINV x AINV SINV x X ]
C [ RINV x C RINV x Y ],
C
C where the first block row was modified at Step 1.
C Workspace: need (N+P)*(N+1) + 2*N;
C prefer (N+P)*(N+1) + N + N*NB.
C
ITAU = I21 + NP
JWORK = ITAU + N
C
CALL DGEQRF( NP, N, DWORK, LDW, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Apply the Householder transformations to the last column.
C Workspace: need (N+P)*(N+1) + 1; prefer (N+P)*(N+1) + NB.
C
CALL DORMQR( 'Left', 'Transpose', NP, 1, N, DWORK, LDW,
$ DWORK(ITAU), DWORK(I21), LDW, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Output SINV, X, and E and set the optimal workspace dimension
C (and the reciprocal of the condition number estimate).
C
CALL DLACPY( 'Upper', N, N, DWORK, LDW, SINV, LDSINV )
CALL DCOPY( N, DWORK(I21), 1, X, 1 )
CALL DCOPY( P, DWORK(I23), 1, E, 1 )
C
IF ( LJOBX ) THEN
C
C Compute X.
C Workspace: need 3*N.
C
CALL MB02OD( 'Left', 'Upper', 'No transpose', 'Non-unit',
$ '1-norm', N, 1, ONE, SINV, LDSINV, X, N, RCOND,
$ TOL, IWORK, DWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRKOPT = MAX( WRKOPT, 3*N )
DWORK(2) = RCOND
END IF
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of FB01SD ***
END
|