File: FB01VD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (391 lines) | stat: -rw-r--r-- 13,797 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
      SUBROUTINE FB01VD( N, M, L, P, LDP, A, LDA, B, LDB, C, LDC, Q,
     $                   LDQ, R, LDR, K, LDK, TOL, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute one recursion of the conventional Kalman filter
C     equations. This is one update of the Riccati difference equation
C     and the Kalman filter gain.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The actual state dimension, i.e., the order of the
C             matrices P      and A .  N >= 0.
C                       i|i-1      i
C
C     M       (input) INTEGER
C             The actual input dimension, i.e., the order of the matrix
C             Q .  M >= 0.
C              i
C
C     L       (input) INTEGER
C             The actual output dimension, i.e., the order of the matrix
C             R .  L >= 0.
C              i
C
C     P       (input/output) DOUBLE PRECISION array, dimension (LDP,N)
C             On entry, the leading N-by-N part of this array must
C             contain P     , the state covariance matrix at instant
C                      i|i-1
C             (i-1). The upper triangular part only is needed.
C             On exit, if INFO = 0, the leading N-by-N part of this
C             array contains P     , the state covariance matrix at
C                             i+1|i
C             instant i. The strictly lower triangular part is not set.
C             Otherwise, the leading N-by-N part of this array contains
C             P     , its input value.
C              i|i-1
C
C     LDP     INTEGER
C             The leading dimension of array P.  LDP >= MAX(1,N).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain A ,
C                                                                 i
C             the state transition matrix of the discrete system at
C             instant i.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain B ,
C                                                                 i
C             the input weight matrix of the discrete system at
C             instant i.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading L-by-N part of this array must contain C ,
C                                                                 i
C             the output weight matrix of the discrete system at
C             instant i.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,L).
C
C     Q       (input) DOUBLE PRECISION array, dimension (LDQ,M)
C             The leading M-by-M part of this array must contain Q ,
C                                                                 i
C             the input (process) noise covariance matrix at instant i.
C             The diagonal elements of this array are modified by the
C             routine, but are restored on exit.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.  LDQ >= MAX(1,M).
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,L)
C             On entry, the leading L-by-L part of this array must
C             contain R , the output (measurement) noise covariance
C                      i
C             matrix at instant i.
C             On exit, if INFO = 0, or INFO = L+1, the leading L-by-L
C                                                                  1/2
C             upper triangular part of this array contains (RINOV )   ,
C                                                                i
C             the square root (left Cholesky factor) of the covariance
C             matrix of the innovations at instant i.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,L).
C
C     K       (output) DOUBLE PRECISION array, dimension (LDK,L)
C             If INFO = 0, the leading N-by-L part of this array
C             contains K , the Kalman filter gain matrix at instant i.
C                       i
C             If INFO > 0, the leading N-by-L part of this array
C             contains the matrix product P     C'.
C                                          i|i-1 i
C
C     LDK     INTEGER
C             The leading dimension of array K.  LDK >= MAX(1,N).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used to test for near singularity of
C             the matrix RINOV . If the user sets TOL > 0, then the
C                             i
C             given value of TOL is used as a lower bound for the
C             reciprocal condition number of that matrix; a matrix whose
C             estimated condition number is less than 1/TOL is
C             considered to be nonsingular. If the user sets TOL <= 0,
C             then an implicitly computed, default tolerance, defined by
C             TOLDEF = L*L*EPS, is used instead, where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (L)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, or INFO = L+1, DWORK(1) returns an
C             estimate of the reciprocal of the condition number (in the
C             1-norm) of the matrix RINOV .
C                                        i
C
C     LDWORK  The length of the array DWORK.
C             LDWORK >= MAX(1,L*N+3*L,N*N,N*M).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -k, the k-th argument had an illegal
C                   value;
C             = k:  if INFO = k, 1 <= k <= L, the leading minor of order
C                   k of the matrix RINOV  is not positive-definite, and
C                                        i
C                   its Cholesky factorization could not be completed;
C             = L+1: the matrix RINOV  is singular, i.e., the condition
C                                    i
C                   number estimate of RINOV  (in the 1-norm) exceeds
C                                           i
C                   1/TOL.
C
C     METHOD
C
C     The conventional Kalman filter gain used at the i-th recursion
C     step is of the form
C
C                            -1
C        K  = P     C'  RINOV  ,
C         i    i|i-1 i       i
C
C     where RINOV  = C P     C' + R , and the state covariance matrix
C                i    i i|i-1 i    i
C
C     P      is updated by the discrete-time difference Riccati equation
C      i|i-1
C
C        P      = A  (P      - K C P     ) A'  + B Q B'.
C         i+1|i    i   i|i-1    i i i|i-1   i     i i i
C
C     Using these two updates, the combined time and measurement update
C     of the state X      is given by
C                   i|i-1
C
C        X      = A X      + A K (Y  - C X     ),
C         i+1|i    i i|i-1    i i  i    i i|i-1
C
C     where Y  is the new observation at step i.
C            i
C
C     REFERENCES
C
C     [1] Anderson, B.D.O. and Moore, J.B.
C         Optimal Filtering,
C         Prentice Hall, Englewood Cliffs, New Jersey, 1979.
C
C     [2] Verhaegen, M.H.G. and Van Dooren, P.
C         Numerical Aspects of Different Kalman Filter Implementations.
C         IEEE Trans. Auto. Contr., AC-31, pp. 907-917, 1986.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately
C
C             3   2
C      3/2 x N + N  x (3 x L + M/2)
C
C     operations.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C     Supersedes Release 2.0 routine FB01JD by M.H.G. Verhaegen,
C     M. Vanbegin, and P. Van Dooren.
C
C     REVISIONS
C
C     February 20, 1998, November 20, 2003, April 20, 2004.
C
C     KEYWORDS
C
C     Kalman filtering, optimal filtering, recursive estimation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, L, LDA, LDB, LDC, LDK, LDP, LDQ, LDR,
     $                  LDWORK, M, N
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
     $                  K(LDK,*), P(LDP,*), Q(LDQ,*), R(LDR,*)
C     .. Local Scalars ..
      INTEGER           J, JWORK, LDW, N1
      DOUBLE PRECISION  RCOND, RNORM, TOLDEF
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLANSY
      EXTERNAL          DLAMCH, DLANSY
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DLACPY, DLASET, DPOCON,
     $                  DPOTRF, DSCAL, DTRMM, DTRSM, MB01RD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      N1 = MAX( 1, N )
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( L.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDP.LT.N1 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.N1 ) THEN
         INFO = -7
      ELSE IF( LDB.LT.N1 ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, L ) ) THEN
         INFO = -11
      ELSE IF( LDQ.LT.MAX( 1, M ) ) THEN
         INFO = -13
      ELSE IF( LDR.LT.MAX( 1, L ) ) THEN
         INFO = -15
      ELSE IF( LDK.LT.N1 ) THEN
         INFO = -17
      ELSE IF( LDWORK.LT.MAX( 1, L*N + 3*L, N*N, N*M ) ) THEN
         INFO = -21
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'FB01VD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, L ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Efficiently compute RINOV = CPC' + R in R and put CP in DWORK and
C     PC' in K. (The content of DWORK on exit from MB01RD is used.)
C     Workspace: need L*N.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code.)
C
      CALL MB01RD( 'Upper', 'No transpose', L, N, ONE, ONE, R, LDR, C,
     $             LDC, P, LDP, DWORK, LDWORK, INFO )
      LDW = MAX( 1, L )
C
      DO 10 J = 1, L
         CALL DCOPY( N, DWORK(J), LDW, K(1,J), 1 )
   10 CONTINUE
C
      CALL DLACPY( 'Full', L, N, C, LDC, DWORK, LDW )
      CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-unit', L, N, ONE,
     $            P, LDP, DWORK, LDW )
      CALL DSCAL( N, TWO, P, LDP+1 )
C
      DO 20 J = 1, L
         CALL DAXPY( N, ONE, K(1,J), 1, DWORK(J), LDW )
         CALL DCOPY( N, DWORK(J), LDW, K(1,J), 1 )
   20 CONTINUE
C
C     Calculate the Cholesky decomposition U'U of the innovation
C     covariance matrix RINOV, and its reciprocal condition number.
C     Workspace: need L*N + 3*L.
C
      JWORK = L*N + 1
      RNORM = DLANSY( '1-norm', 'Upper', L, R, LDR, DWORK(JWORK) )
C
      TOLDEF = TOL
      IF ( TOLDEF.LE.ZERO )
     $   TOLDEF = DBLE( L*L )*DLAMCH( 'Epsilon' )
      CALL DPOTRF( 'Upper', L, R, LDR, INFO )
      IF ( INFO.NE.0 )
     $   RETURN
C
      CALL DPOCON( 'Upper', L, R, LDR, RNORM, RCOND, DWORK(JWORK),
     $             IWORK, INFO )
C
      IF ( RCOND.LT.TOLDEF ) THEN
C
C        Error return: RINOV is numerically singular.
C
         INFO = L+1
         DWORK(1) = RCOND
         RETURN
      END IF
C
      IF ( L.GT.1 )
     $   CALL DLASET( 'Lower', L-1, L-1, ZERO, ZERO, R(2,1),LDR )
C                                                          -1
C     Calculate the Kalman filter gain matrix  K = PC'RINOV .
C     Workspace: need L*N.
C
      CALL DTRSM( 'Right', 'Upper', 'No transpose', 'Non-unit', N, L,
     $            ONE, R, LDR, K, LDK )
      CALL DTRSM( 'Right', 'Upper', 'Transpose', 'Non-unit', N, L,
     $            ONE, R, LDR, K, LDK )
C
C     First part of the Riccati equation update: compute A(P-KCP)A'.
C     The upper triangular part of the symmetric matrix P-KCP is formed.
C     Workspace: need max(L*N,N*N).
C
      JWORK = 1
C
      DO 30 J = 1, N
         CALL DGEMV( 'No transpose', J, L, -ONE, K, LDK, DWORK(JWORK),
     $               1, ONE, P(1,J), 1 )
         JWORK = JWORK + L
   30 CONTINUE
C
      CALL MB01RD( 'Upper', 'No transpose', N, N, ZERO, ONE, P, LDP, A,
     $             LDA, P, LDP, DWORK, LDWORK, INFO )
C
C     Second part of the Riccati equation update: add BQB'.
C     Workspace: need N*M.
C
      CALL MB01RD( 'Upper', 'No transpose', N, M, ONE, ONE, P, LDP, B,
     $             LDB, Q, LDQ, DWORK, LDWORK, INFO )
      CALL DSCAL( M, TWO, Q, LDQ+1 )
C
C     Set the reciprocal of the condition number estimate.
C
      DWORK(1) = RCOND
C
      RETURN
C *** Last line of FB01VD ***
      END