File: FD01AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (367 lines) | stat: -rw-r--r-- 13,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      SUBROUTINE FD01AD( JP, L, LAMBDA, XIN, YIN, EFOR, XF, EPSBCK,
     $                   CTETA, STETA, YQ, EPOS, EOUT, SALPH, IWARN,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve the least-squares filtering problem recursively in time.
C     Each subroutine call implements one time update of the solution.
C     The algorithm uses a fast QR-decomposition based approach.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JP      CHARACTER*1
C             Indicates whether the user wishes to apply both prediction
C             and filtering parts, as follows:
C             = 'B':  Both prediction and filtering parts are to be
C                     applied;
C             = 'P':  Only the prediction section is to be applied.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The length of the impulse response of the equivalent
C             transversal filter model.  L >= 1.
C
C     LAMBDA  (input) DOUBLE PRECISION
C             Square root of the forgetting factor.
C             For tracking capabilities and exponentially stable error
C             propagation, LAMBDA < 1.0 (strict inequality) should
C             be used.  0.0 < LAMBDA <= 1.0.
C
C     XIN     (input) DOUBLE PRECISION
C             The input sample at instant n.
C             (The situation just before and just after the call of
C             the routine are denoted by instant (n-1) and instant n,
C             respectively.)
C
C     YIN     (input) DOUBLE PRECISION
C             If JP = 'B', then YIN must contain the reference sample
C             at instant n.
C             Otherwise, YIN is not referenced.
C
C     EFOR    (input/output) DOUBLE PRECISION
C             On entry, this parameter must contain the square root of
C             exponentially weighted forward prediction error energy
C             at instant (n-1).  EFOR >= 0.0.
C             On exit, this parameter contains the square root of the
C             exponentially weighted forward prediction error energy
C             at instant n.
C
C     XF      (input/output) DOUBLE PRECISION array, dimension (L)
C             On entry, this array must contain the transformed forward
C             prediction variables at instant (n-1).
C             On exit, this array contains the transformed forward
C             prediction variables at instant n.
C
C     EPSBCK  (input/output) DOUBLE PRECISION array, dimension (L+1)
C             On entry, the leading L elements of this array must
C             contain the normalized a posteriori backward prediction
C             error residuals of orders zero through L-1, respectively,
C             at instant (n-1), and EPSBCK(L+1) must contain the
C             square-root of the so-called "conversion factor" at
C             instant (n-1).
C             On exit, this array contains the normalized a posteriori
C             backward prediction error residuals, plus the square root
C             of the conversion factor at instant n.
C
C     CTETA   (input/output) DOUBLE PRECISION array, dimension (L)
C             On entry, this array must contain the cosines of the
C             rotation angles used in time updates, at instant (n-1).
C             On exit, this array contains the cosines of the rotation
C             angles at instant n.
C
C     STETA   (input/output) DOUBLE PRECISION array, dimension (L)
C             On entry, this array must contain the sines of the
C             rotation angles used in time updates, at instant (n-1).
C             On exit, this array contains the sines of the rotation
C             angles at instant n.
C
C     YQ      (input/output) DOUBLE PRECISION array, dimension (L)
C             On entry, if JP = 'B', then this array must contain the
C             orthogonally transformed reference vector at instant
C             (n-1). These elements are also the tap multipliers of an
C             equivalent normalized lattice least-squares filter.
C             Otherwise, YQ is not referenced and can be supplied as
C             a dummy array (i.e., declare this array to be YQ(1) in
C             the calling program).
C             On exit, if JP = 'B', then this array contains the
C             orthogonally transformed reference vector at instant n.
C
C     EPOS    (output) DOUBLE PRECISION
C             The a posteriori forward prediction error residual.
C
C     EOUT    (output) DOUBLE PRECISION
C             If JP = 'B', then EOUT contains the a posteriori output
C             error residual from the least-squares filter at instant n.
C
C     SALPH   (output) DOUBLE PRECISION array, dimension (L)
C             The element SALPH(i), i=1,...,L, contains the opposite of
C             the i-(th) reflection coefficient for the least-squares
C             normalized lattice predictor (whose value is -SALPH(i)).
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  an element to be annihilated by a rotation is less
C                   than the machine precision (see LAPACK Library
C                   routine DLAMCH).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The output error EOUT at instant n, denoted by EOUT(n), is the
C     reference sample minus a linear combination of L successive input
C     samples:
C
C                           L-1
C        EOUT(n) = YIN(n) - SUM h_i * XIN(n-i),
C                           i=0
C
C     where YIN(n) and XIN(n) are the scalar samples at instant n.
C     A least-squares filter uses those h_0,...,h_{L-1} which minimize
C     an exponentially weighted sum of successive output errors squared:
C
C         n
C        SUM [LAMBDA**(2(n-k)) * EOUT(k)**2].
C        k=1
C
C     Each subroutine call performs a time update of the least-squares
C     filter using a fast least-squares algorithm derived from a
C     QR decomposition, as described in references [1] and [2] (the
C     notation from [2] is followed in the naming of the arrays).
C     The algorithm does not compute the parameters h_0,...,h_{L-1} from
C     the above formula, but instead furnishes the parameters of an
C     equivalent normalized least-squares lattice filter, which are
C     available from the arrays SALPH (reflection coefficients) and YQ
C     (tap multipliers), as well as the exponentially weighted input
C     signal energy
C
C         n                                              L
C        SUM [LAMBDA**(2(n-k)) * XIN(k)**2] = EFOR**2 + SUM XF(i)**2.
C        k=1                                            i=1
C
C     For more details on reflection coefficients and tap multipliers,
C     references [2] and [4] are recommended.
C
C     REFERENCES
C
C     [1]  Proudler, I. K., McWhirter, J. G., and Shepherd, T. J.
C          Fast QRD based algorithms for least-squares linear
C          prediction.
C          Proceedings IMA Conf. Mathematics in Signal Processing
C          Warwick, UK, December 1988.
C
C     [2]  Regalia, P. A., and Bellanger, M. G.
C          On the duality between QR methods and lattice methods in
C          least-squares adaptive filtering.
C          IEEE Trans. Signal Processing, SP-39, pp. 879-891,
C          April 1991.
C
C     [3]  Regalia, P. A.
C          Numerical stability properties of a QR-based fast
C          least-squares algorithm.
C          IEEE Trans. Signal Processing, SP-41, June 1993.
C
C     [4]  Lev-Ari, H., Kailath, T., and Cioffi, J.
C          Least-squares adaptive lattice and transversal filters:
C          A unified geometric theory.
C          IEEE Trans. Information Theory, IT-30, pp. 222-236,
C          March 1984.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O(L) operations for each subroutine call.
C     It is backward consistent for all input sequences XIN, and
C     backward stable for persistently exciting input sequences,
C     assuming LAMBDA < 1.0 (see [3]).
C     If the condition of the signal is very poor (IWARN = 1), then the
C     results are not guaranteed to be reliable.
C
C     FURTHER COMMENTS
C
C     1.  For tracking capabilities and exponentially stable error
C         propagation, LAMBDA < 1.0 should be used.  LAMBDA is typically
C         chosen slightly less than 1.0 so that "past" data are
C         exponentially forgotten.
C     2.  Prior to the first subroutine call, the variables must be
C         initialized. The following initial values are recommended:
C
C         XF(i) = 0.0,        i=1,...,L
C         EPSBCK(i) = 0.0     i=1,...,L
C         EPSBCK(L+1) = 1.0
C         CTETA(i) = 1.0      i=1,...,L
C         STETA(i) = 0.0      i=1,...,L
C         YQ(i) = 0.0         i=1,...,L
C
C         EFOR = 0.0          (exact start)
C         EFOR = "small positive constant" (soft start).
C
C         Soft starts are numerically more reliable, but result in a
C         biased least-squares solution during the first few iterations.
C         This bias decays exponentially fast provided LAMBDA < 1.0.
C         If sigma is the standard deviation of the input sequence
C         XIN, then initializing EFOR = sigma*1.0E-02 usually works
C         well.
C
C     CONTRIBUTOR
C
C     P. A. Regalia (October 1994).
C     Release 4.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1999.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Kalman filtering, least-squares estimator, optimal filtering,
C     orthogonal transformation, recursive estimation, QR decomposition.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JP
      INTEGER           INFO, IWARN, L
      DOUBLE PRECISION  EFOR, EOUT, EPOS, LAMBDA, XIN, YIN
C     .. Array Arguments ..
      DOUBLE PRECISION  CTETA(*), EPSBCK(*), SALPH(*), STETA(*), XF(*),
     $                  YQ(*)
C     .. Local Scalars ..
      LOGICAL           BOTH
      INTEGER           I
      DOUBLE PRECISION  CTEMP, EPS, FNODE, NORM, TEMP, XFI, YQI
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLAPY2, DNRM2
      EXTERNAL          DLAMCH, DLAPY2, DNRM2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLARTG, XERBLA
C     .. Intrinsic Functions
      INTRINSIC         ABS, SQRT
C     .. Executable statements ..
C
C     Test the input scalar arguments.
C
      BOTH  = LSAME( JP, 'B' )
      IWARN = 0
      INFO  = 0
C
      IF( .NOT.BOTH .AND. .NOT.LSAME( JP, 'P' ) ) THEN
         INFO = -1
      ELSE IF( L.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( LAMBDA.LE.ZERO ) .OR. ( LAMBDA.GT.ONE  ) ) THEN
         INFO = -3
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'FD01AD', -INFO )
         RETURN
      END IF
C
C     Computation of the machine precision EPS.
C
      EPS = DLAMCH( 'Epsilon' )
C
C     Forward prediction rotations.
C
      FNODE = XIN
C
      DO 10  I = 1, L
         XFI   = XF(I) * LAMBDA
         XF(I) = STETA(I) * FNODE + CTETA(I) * XFI
         FNODE = CTETA(I) * FNODE - STETA(I) * XFI
   10 CONTINUE
C
      EPOS = FNODE * EPSBCK(L+1)
C
C     Update the square root of the prediction energy.
C
      EFOR = EFOR * LAMBDA
      TEMP = DLAPY2( FNODE, EFOR )
      IF ( TEMP.LT.EPS ) THEN
         FNODE = ZERO
         IWARN = 1
      ELSE
         FNODE = FNODE * EPSBCK(L+1)/TEMP
      END IF
      EFOR = TEMP
C
C     Calculate the reflection coefficients and the backward prediction
C     errors.
C
      DO 20 I = L, 1, -1
         IF ( ABS( XF(I) ).LT.EPS )
     $      IWARN = 1
         CALL DLARTG( TEMP, XF(I), CTEMP, SALPH(I), NORM )
         EPSBCK(I+1) = CTEMP * EPSBCK(I) - SALPH(I) * FNODE
         FNODE = CTEMP * FNODE + SALPH(I) * EPSBCK(I)
         TEMP  = NORM
   20 CONTINUE
C
      EPSBCK(1) = FNODE
C
C     Update to new rotation angles.
C
      NORM = DNRM2( L, EPSBCK, 1 )
      TEMP = SQRT( ( ONE + NORM )*( ONE - NORM ) )
      EPSBCK(L+1) = TEMP
C
      DO 30 I = L, 1, -1
         IF ( ABS( EPSBCK(I) ).LT.EPS )
     $      IWARN = 1
         CALL DLARTG( TEMP, EPSBCK(I), CTETA(I), STETA(I), NORM )
         TEMP = NORM
   30 CONTINUE
C
C     Joint process section.
C
      IF ( BOTH) THEN
         FNODE = YIN
C
         DO 40  I = 1, L
            YQI   = YQ(I) * LAMBDA
            YQ(I) = STETA(I) * FNODE + CTETA(I) * YQI
            FNODE = CTETA(I) * FNODE - STETA(I) * YQI
   40    CONTINUE
C
         EOUT = FNODE * EPSBCK(L+1)
      END IF
C
      RETURN
C *** Last line of FD01AD ***
      END