1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
|
SUBROUTINE IB01AD( METH, ALG, JOBD, BATCH, CONCT, CTRL, NOBR, M,
$ L, NSMP, U, LDU, Y, LDY, N, R, LDR, SV, RCOND,
$ TOL, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To preprocess the input-output data for estimating the matrices
C of a linear time-invariant dynamical system and to find an
C estimate of the system order. The input-output data can,
C optionally, be processed sequentially.
C
C ARGUMENTS
C
C Mode Parameters
C
C METH CHARACTER*1
C Specifies the subspace identification method to be used,
C as follows:
C = 'M': MOESP algorithm with past inputs and outputs;
C = 'N': N4SID algorithm.
C
C ALG CHARACTER*1
C Specifies the algorithm for computing the triangular
C factor R, as follows:
C = 'C': Cholesky algorithm applied to the correlation
C matrix of the input-output data;
C = 'F': Fast QR algorithm;
C = 'Q': QR algorithm applied to the concatenated block
C Hankel matrices.
C
C JOBD CHARACTER*1
C Specifies whether or not the matrices B and D should later
C be computed using the MOESP approach, as follows:
C = 'M': the matrices B and D should later be computed
C using the MOESP approach;
C = 'N': the matrices B and D should not be computed using
C the MOESP approach.
C This parameter is not relevant for METH = 'N'.
C
C BATCH CHARACTER*1
C Specifies whether or not sequential data processing is to
C be used, and, for sequential processing, whether or not
C the current data block is the first block, an intermediate
C block, or the last block, as follows:
C = 'F': the first block in sequential data processing;
C = 'I': an intermediate block in sequential data
C processing;
C = 'L': the last block in sequential data processing;
C = 'O': one block only (non-sequential data processing).
C NOTE that when 100 cycles of sequential data processing
C are completed for BATCH = 'I', a warning is
C issued, to prevent for an infinite loop.
C
C CONCT CHARACTER*1
C Specifies whether or not the successive data blocks in
C sequential data processing belong to a single experiment,
C as follows:
C = 'C': the current data block is a continuation of the
C previous data block and/or it will be continued
C by the next data block;
C = 'N': there is no connection between the current data
C block and the previous and/or the next ones.
C This parameter is not used if BATCH = 'O'.
C
C CTRL CHARACTER*1
C Specifies whether or not the user's confirmation of the
C system order estimate is desired, as follows:
C = 'C': user's confirmation;
C = 'N': no confirmation.
C If CTRL = 'C', a reverse communication routine, IB01OY,
C is indirectly called (by SLICOT Library routine IB01OD),
C and, after inspecting the singular values and system order
C estimate, n, the user may accept n or set a new value.
C IB01OY is not called if CTRL = 'N'.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C block Hankel matrices to be processed. NOBR > 0.
C (In the MOESP theory, NOBR should be larger than n,
C the estimated dimension of state vector.)
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C When M = 0, no system inputs are processed.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C NSMP (input) INTEGER
C The number of rows of matrices U and Y (number of
C samples, t). (When sequential data processing is used,
C NSMP is the number of samples of the current data
C block.)
C NSMP >= 2*(M+L+1)*NOBR - 1, for non-sequential
C processing;
C NSMP >= 2*NOBR, for sequential processing.
C The total number of samples when calling the routine with
C BATCH = 'L' should be at least 2*(M+L+1)*NOBR - 1.
C The NSMP argument may vary from a cycle to another in
C sequential data processing, but NOBR, M, and L should
C be kept constant. For efficiency, it is advisable to use
C NSMP as large as possible.
C
C U (input) DOUBLE PRECISION array, dimension (LDU,M)
C The leading NSMP-by-M part of this array must contain the
C t-by-m input-data sequence matrix U,
C U = [u_1 u_2 ... u_m]. Column j of U contains the
C NSMP values of the j-th input component for consecutive
C time increments.
C If M = 0, this array is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= NSMP, if M > 0;
C LDU >= 1, if M = 0.
C
C Y (input) DOUBLE PRECISION array, dimension (LDY,L)
C The leading NSMP-by-L part of this array must contain the
C t-by-l output-data sequence matrix Y,
C Y = [y_1 y_2 ... y_l]. Column j of Y contains the
C NSMP values of the j-th output component for consecutive
C time increments.
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= NSMP.
C
C N (output) INTEGER
C The estimated order of the system.
C If CTRL = 'C', the estimated order has been reset to a
C value specified by the user.
C
C R (output or input/output) DOUBLE PRECISION array, dimension
C ( LDR,2*(M+L)*NOBR )
C On exit, if ALG = 'C' and BATCH = 'F' or 'I', the leading
C 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper triangular part of this
C array contains the current upper triangular part of the
C correlation matrix in sequential data processing.
C If ALG = 'F' and BATCH = 'F' or 'I', the array R is not
C referenced.
C On exit, if INFO = 0, ALG = 'Q', and BATCH = 'F' or 'I',
C the leading 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper triangular
C part of this array contains the current upper triangular
C factor R from the QR factorization of the concatenated
C block Hankel matrices. Denote R_ij, i,j = 1:4, the
C ij submatrix of R, partitioned by M*NOBR, M*NOBR,
C L*NOBR, and L*NOBR rows and columns.
C On exit, if INFO = 0 and BATCH = 'L' or 'O', the leading
C 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper triangular part of
C this array contains the matrix S, the processed upper
C triangular factor R from the QR factorization of the
C concatenated block Hankel matrices, as required by other
C subroutines. Specifically, let S_ij, i,j = 1:4, be the
C ij submatrix of S, partitioned by M*NOBR, L*NOBR,
C M*NOBR, and L*NOBR rows and columns. The submatrix
C S_22 contains the matrix of left singular vectors needed
C subsequently. Useful information is stored in S_11 and
C in the block-column S_14 : S_44. For METH = 'M' and
C JOBD = 'M', the upper triangular part of S_31 contains
C the upper triangular factor in the QR factorization of the
C matrix R_1c = [ R_12' R_22' R_11' ]', and S_12
C contains the corresponding leading part of the transformed
C matrix R_2c = [ R_13' R_23' R_14' ]'. For METH = 'N',
C the subarray S_41 : S_43 contains the transpose of the
C matrix contained in S_14 : S_34.
C The details of the contents of R need not be known if this
C routine is followed by SLICOT Library routine IB01BD.
C On entry, if ALG = 'C', or ALG = 'Q', and BATCH = 'I' or
C 'L', the leading 2*(M+L)*NOBR-by-2*(M+L)*NOBR upper
C triangular part of this array must contain the upper
C triangular matrix R computed at the previous call of this
C routine in sequential data processing. The array R need
C not be set on entry if ALG = 'F' or if BATCH = 'F' or 'O'.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 2*(M+L)*NOBR, 3*M*NOBR ),
C for METH = 'M' and JOBD = 'M';
C LDR >= 2*(M+L)*NOBR, for METH = 'M' and JOBD = 'N' or
C for METH = 'N'.
C
C SV (output) DOUBLE PRECISION array, dimension ( L*NOBR )
C The singular values used to estimate the system order.
C
C Tolerances
C
C RCOND DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets RCOND > 0, the given value
C of RCOND is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/RCOND is considered to
C be of full rank. If the user sets RCOND <= 0, then an
C implicitly computed, default tolerance, defined by
C RCONDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C This parameter is not used for METH = 'M'.
C
C TOL DOUBLE PRECISION
C Absolute tolerance used for determining an estimate of
C the system order. If TOL >= 0, the estimate is
C indicated by the index of the last singular value greater
C than or equal to TOL. (Singular values less than TOL
C are considered as zero.) When TOL = 0, an internally
C computed default value, TOL = NOBR*EPS*SV(1), is used,
C where SV(1) is the maximal singular value, and EPS is
C the relative machine precision (see LAPACK Library routine
C DLAMCH). When TOL < 0, the estimate is indicated by the
C index of the singular value that has the largest
C logarithmic gap to its successor.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK >= (M+L)*NOBR, if METH = 'N';
C LIWORK >= M+L, if METH = 'M' and ALG = 'F';
C LIWORK >= 0, if METH = 'M' and ALG = 'C' or 'Q'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, for METH = 'N', and BATCH = 'L' or
C 'O', DWORK(2) and DWORK(3) contain the reciprocal
C condition numbers of the triangular factors of the
C matrices U_f and r_1 [6].
C On exit, if INFO = -23, DWORK(1) returns the minimum
C value of LDWORK.
C Let
C k = 0, if CONCT = 'N' and ALG = 'C' or 'Q';
C k = 2*NOBR-1, if CONCT = 'C' and ALG = 'C' or 'Q';
C k = 2*NOBR*(M+L+1), if CONCT = 'N' and ALG = 'F';
C k = 2*NOBR*(M+L+2), if CONCT = 'C' and ALG = 'F'.
C The first (M+L)*k elements of DWORK should be preserved
C during successive calls of the routine with BATCH = 'F'
C or 'I', till the final call with BATCH = 'L'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= (4*NOBR-2)*(M+L), if ALG = 'C', BATCH = 'F' or
C 'I' and CONCT = 'C';
C LDWORK >= 1, if ALG = 'C', BATCH = 'F' or 'I' and
C CONCT = 'N';
C LDWORK >= max((4*NOBR-2)*(M+L), 5*L*NOBR), if METH = 'M',
C ALG = 'C', BATCH = 'L' and CONCT = 'C';
C LDWORK >= max((2*M-1)*NOBR, (M+L)*NOBR, 5*L*NOBR),
C if METH = 'M', JOBD = 'M', ALG = 'C',
C BATCH = 'O', or
C (BATCH = 'L' and CONCT = 'N');
C LDWORK >= 5*L*NOBR, if METH = 'M', JOBD = 'N', ALG = 'C',
C BATCH = 'O', or
C (BATCH = 'L' and CONCT = 'N');
C LDWORK >= 5*(M+L)*NOBR+1, if METH = 'N', ALG = 'C', and
C BATCH = 'L' or 'O';
C LDWORK >= (M+L)*2*NOBR*(M+L+3), if ALG = 'F',
C BATCH <> 'O' and CONCT = 'C';
C LDWORK >= (M+L)*2*NOBR*(M+L+1), if ALG = 'F',
C BATCH = 'F', 'I' and CONCT = 'N';
C LDWORK >= (M+L)*4*NOBR*(M+L+1)+(M+L)*2*NOBR, if ALG = 'F',
C BATCH = 'L' and CONCT = 'N', or
C BATCH = 'O';
C LDWORK >= 4*(M+L)*NOBR, if ALG = 'Q', BATCH = 'F', and
C LDR >= NS = NSMP - 2*NOBR + 1;
C LDWORK >= max(4*(M+L)*NOBR, 5*L*NOBR), if METH = 'M',
C ALG = 'Q', BATCH = 'O', and LDR >= NS;
C LDWORK >= 5*(M+L)*NOBR+1, if METH = 'N', ALG = 'Q',
C BATCH = 'O', and LDR >= NS;
C LDWORK >= 6*(M+L)*NOBR, if ALG = 'Q', (BATCH = 'F' or 'O',
C and LDR < NS), or (BATCH = 'I' or
C 'L' and CONCT = 'N');
C LDWORK >= 4*(NOBR+1)*(M+L)*NOBR, if ALG = 'Q', BATCH = 'I'
C or 'L' and CONCT = 'C'.
C The workspace used for ALG = 'Q' is
C LDRWRK*2*(M+L)*NOBR + 4*(M+L)*NOBR,
C where LDRWRK = LDWORK/(2*(M+L)*NOBR) - 2; recommended
C value LDRWRK = NS, assuming a large enough cache size.
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: the number of 100 cycles in sequential data
C processing has been exhausted without signaling
C that the last block of data was get; the cycle
C counter was reinitialized;
C = 2: a fast algorithm was requested (ALG = 'C' or 'F'),
C but it failed, and the QR algorithm was then used
C (non-sequential data processing);
C = 3: all singular values were exactly zero, hence N = 0
C (both input and output were identically zero);
C = 4: the least squares problems with coefficient matrix
C U_f, used for computing the weighted oblique
C projection (for METH = 'N'), have a rank-deficient
C coefficient matrix;
C = 5: the least squares problem with coefficient matrix
C r_1 [6], used for computing the weighted oblique
C projection (for METH = 'N'), has a rank-deficient
C coefficient matrix.
C NOTE: the values 4 and 5 of IWARN have no significance
C for the identification problem.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: a fast algorithm was requested (ALG = 'C', or 'F')
C in sequential data processing, but it failed; the
C routine can be repeatedly called again using the
C standard QR algorithm;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge.
C
C METHOD
C
C The procedure consists in three main steps, the first step being
C performed by one of the three algorithms included.
C
C 1.a) For non-sequential data processing using QR algorithm, a
C t x 2(m+l)s matrix H is constructed, where
C
C H = [ Uf' Up' Y' ], for METH = 'M',
C s+1,2s,t 1,s,t 1,2s,t
C
C H = [ U' Y' ], for METH = 'N',
C 1,2s,t 1,2s,t
C
C and Up , Uf , U , and Y are block Hankel
C 1,s,t s+1,2s,t 1,2s,t 1,2s,t
C matrices defined in terms of the input and output data [3].
C A QR factorization is used to compress the data.
C The fast QR algorithm uses a QR factorization which exploits
C the block-Hankel structure. Actually, the Cholesky factor of H'*H
C is computed.
C
C 1.b) For sequential data processing using QR algorithm, the QR
C decomposition is done sequentially, by updating the upper
C triangular factor R. This is also performed internally if the
C workspace is not large enough to accommodate an entire batch.
C
C 1.c) For non-sequential or sequential data processing using
C Cholesky algorithm, the correlation matrix of input-output data is
C computed (sequentially, if requested), taking advantage of the
C block Hankel structure [7]. Then, the Cholesky factor of the
C correlation matrix is found, if possible.
C
C 2) A singular value decomposition (SVD) of a certain matrix is
C then computed, which reveals the order n of the system as the
C number of "non-zero" singular values. For the MOESP approach, this
C matrix is [ R_24' R_34' ]' := R(ms+1:(2m+l)s,(2m+l)s+1:2(m+l)s),
C where R is the upper triangular factor R constructed by SLICOT
C Library routine IB01MD. For the N4SID approach, a weighted
C oblique projection is computed from the upper triangular factor R
C and its SVD is then found.
C
C 3) The singular values are compared to the given, or default TOL,
C and the estimated order n is returned, possibly after user's
C confirmation.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Verhaegen M.
C Subspace Model Identification. Part 3: Analysis of the
C ordinary output-error state-space model identification
C algorithm.
C Int. J. Control, 58, pp. 555-586, 1993.
C
C [3] Verhaegen M.
C Identification of the deterministic part of MIMO state space
C models given in innovations form from input-output data.
C Automatica, Vol.30, No.1, pp.61-74, 1994.
C
C [4] Van Overschee, P., and De Moor, B.
C N4SID: Subspace Algorithms for the Identification of
C Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [5] Peternell, K., Scherrer, W. and Deistler, M.
C Statistical Analysis of Novel Subspace Identification Methods.
C Signal Processing, 52, pp. 161-177, 1996.
C
C [6] Sima, V.
C Subspace-based Algorithms for Multivariable System
C Identification.
C Studies in Informatics and Control, 5, pp. 335-344, 1996.
C
C [7] Sima, V.
C Cholesky or QR Factorization for Data Compression in
C Subspace-based Identification ?
C Proceedings of the Second NICONET Workshop on ``Numerical
C Control Software: SLICOT, a Useful Tool in Industry'',
C December 3, 1999, INRIA Rocquencourt, France, pp. 75-80, 1999.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable (when QR algorithm is
C used), reliable and efficient. The fast Cholesky or QR algorithms
C are more efficient, but the accuracy could diminish by forming the
C correlation matrix.
C The most time-consuming computational step is step 1:
C 2
C The QR algorithm needs 0(t(2(m+l)s) ) floating point operations.
C 2 3
C The Cholesky algorithm needs 0(2t(m+l) s)+0((2(m+l)s) ) floating
C point operations.
C 2 3 2
C The fast QR algorithm needs 0(2t(m+l) s)+0(4(m+l) s ) floating
C point operations.
C 3
C Step 2 of the algorithm requires 0(((m+l)s) ) floating point
C operations.
C
C FURTHER COMMENTS
C
C For ALG = 'Q', BATCH = 'O' and LDR < NS, or BATCH <> 'O', the
C calculations could be rather inefficient if only minimal workspace
C (see argument LDWORK) is provided. It is advisable to provide as
C much workspace as possible. Almost optimal efficiency can be
C obtained for LDWORK = (NS+2)*(2*(M+L)*NOBR), assuming that the
C cache size is large enough to accommodate R, U, Y, and DWORK.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Universiteit Leuven, Feb. 2000.
C
C REVISIONS
C
C August 2000, March 2005.
C
C KEYWORDS
C
C Cholesky decomposition, Hankel matrix, identification methods,
C multivariable systems, QR decomposition, singular value
C decomposition.
C
C ******************************************************************
C
C .. Scalar Arguments ..
DOUBLE PRECISION RCOND, TOL
INTEGER INFO, IWARN, L, LDR, LDU, LDWORK, LDY, M, N,
$ NOBR, NSMP
CHARACTER ALG, BATCH, CONCT, CTRL, JOBD, METH
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION DWORK(*), R(LDR, *), SV(*), U(LDU, *),
$ Y(LDY, *)
C .. Local Scalars ..
INTEGER IWARNL, LMNOBR, LNOBR, MAXWRK, MINWRK, MNOBR,
$ NOBR21, NR, NS, NSMPSM
LOGICAL CHALG, CONNEC, CONTRL, FIRST, FQRALG, INTERM,
$ JOBDM, LAST, MOESP, N4SID, ONEBCH, QRALG
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL IB01MD, IB01ND, IB01OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Save Statement ..
C MAXWRK is used to store the optimal workspace.
C NSMPSM is used to sum up the NSMP values for BATCH <> 'O'.
SAVE MAXWRK, NSMPSM
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MOESP = LSAME( METH, 'M' )
N4SID = LSAME( METH, 'N' )
FQRALG = LSAME( ALG, 'F' )
QRALG = LSAME( ALG, 'Q' )
CHALG = LSAME( ALG, 'C' )
JOBDM = LSAME( JOBD, 'M' )
ONEBCH = LSAME( BATCH, 'O' )
FIRST = LSAME( BATCH, 'F' ) .OR. ONEBCH
INTERM = LSAME( BATCH, 'I' )
LAST = LSAME( BATCH, 'L' ) .OR. ONEBCH
CONTRL = LSAME( CTRL, 'C' )
C
IF( .NOT.ONEBCH ) THEN
CONNEC = LSAME( CONCT, 'C' )
ELSE
CONNEC = .FALSE.
END IF
C
MNOBR = M*NOBR
LNOBR = L*NOBR
LMNOBR = LNOBR + MNOBR
NR = LMNOBR + LMNOBR
NOBR21 = 2*NOBR - 1
IWARN = 0
INFO = 0
IF( FIRST ) THEN
MAXWRK = 1
NSMPSM = 0
END IF
NSMPSM = NSMPSM + NSMP
C
C Check the scalar input parameters.
C
IF( .NOT.( MOESP .OR. N4SID ) ) THEN
INFO = -1
ELSE IF( .NOT.( FQRALG .OR. QRALG .OR. CHALG ) ) THEN
INFO = -2
ELSE IF( MOESP .AND. .NOT.( JOBDM .OR. LSAME( JOBD, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( FIRST .OR. INTERM .OR. LAST ) ) THEN
INFO = -4
ELSE IF( .NOT. ONEBCH ) THEN
IF( .NOT.( CONNEC .OR. LSAME( CONCT, 'N' ) ) )
$ INFO = -5
END IF
IF( INFO.EQ.0 ) THEN
IF( .NOT.( CONTRL .OR. LSAME( CTRL, 'N' ) ) ) THEN
INFO = -6
ELSE IF( NOBR.LE.0 ) THEN
INFO = -7
ELSE IF( M.LT.0 ) THEN
INFO = -8
ELSE IF( L.LE.0 ) THEN
INFO = -9
ELSE IF( NSMP.LT.2*NOBR .OR.
$ ( LAST .AND. NSMPSM.LT.NR+NOBR21 ) ) THEN
INFO = -10
ELSE IF( LDU.LT.1 .OR. ( M.GT.0 .AND. LDU.LT.NSMP ) ) THEN
INFO = -12
ELSE IF( LDY.LT.NSMP ) THEN
INFO = -14
ELSE IF( LDR.LT.NR .OR. ( MOESP .AND. JOBDM .AND.
$ LDR.LT.3*MNOBR ) ) THEN
INFO = -17
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe
C the minimal amount of workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
NS = NSMP - NOBR21
IF ( CHALG ) THEN
IF ( .NOT.LAST ) THEN
IF ( CONNEC ) THEN
MINWRK = 2*( NR - M - L )
ELSE
MINWRK = 1
END IF
ELSE IF ( MOESP ) THEN
IF ( CONNEC .AND. .NOT.ONEBCH ) THEN
MINWRK = MAX( 2*( NR - M - L ), 5*LNOBR )
ELSE
MINWRK = 5*LNOBR
IF ( JOBDM )
$ MINWRK = MAX( 2*MNOBR - NOBR, LMNOBR, MINWRK )
END IF
ELSE
MINWRK = 5*LMNOBR + 1
END IF
ELSE IF ( FQRALG ) THEN
IF ( .NOT.ONEBCH .AND. CONNEC ) THEN
MINWRK = NR*( M + L + 3 )
ELSE IF ( FIRST .OR. INTERM ) THEN
MINWRK = NR*( M + L + 1 )
ELSE
MINWRK = 2*NR*( M + L + 1 ) + NR
END IF
ELSE
MINWRK = 2*NR
IF ( ONEBCH .AND. LDR.GE.NS ) THEN
IF ( MOESP ) THEN
MINWRK = MAX( MINWRK, 5*LNOBR )
ELSE
MINWRK = 5*LMNOBR + 1
END IF
END IF
IF ( FIRST ) THEN
IF ( LDR.LT.NS ) THEN
MINWRK = MINWRK + NR
END IF
ELSE
IF ( CONNEC ) THEN
MINWRK = MINWRK*( NOBR + 1 )
ELSE
MINWRK = MINWRK + NR
END IF
END IF
END IF
C
MAXWRK = MINWRK
C
IF( LDWORK.LT.MINWRK ) THEN
INFO = -23
DWORK( 1 ) = MINWRK
END IF
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01AD', -INFO )
RETURN
END IF
C
C Compress the input-output data.
C Workspace: need c*(M+L)*NOBR, where c is a constant depending
C on the algorithm and the options used
C (see SLICOT Library routine IB01MD);
C prefer larger.
C
CALL IB01MD( METH, ALG, BATCH, CONCT, NOBR, M, L, NSMP, U, LDU, Y,
$ LDY, R, LDR, IWORK, DWORK, LDWORK, IWARN, INFO )
C
IF ( INFO.EQ.1 ) THEN
C
C Error return: A fast algorithm was requested (ALG = 'C', 'F')
C in sequential data processing, but it failed.
C
RETURN
END IF
C
MAXWRK = MAX( MAXWRK, INT( DWORK( 1 ) ) )
C
IF ( .NOT.LAST ) THEN
C
C Return to get new data.
C
RETURN
END IF
C
C Find the singular value decomposition (SVD) giving the system
C order, and perform related preliminary calculations needed for
C computing the system matrices.
C Workspace: need max( (2*M-1)*NOBR, (M+L)*NOBR, 5*L*NOBR ),
C if METH = 'M';
C 5*(M+L)*NOBR+1, if METH = 'N';
C prefer larger.
C
CALL IB01ND( METH, JOBD, NOBR, M, L, R, LDR, SV, RCOND, IWORK,
$ DWORK, LDWORK, IWARNL, INFO )
IWARN = MAX( IWARN, IWARNL )
C
IF ( INFO.EQ.2 ) THEN
C
C Error return: the singular value decomposition (SVD) algorithm
C did not converge.
C
RETURN
END IF
C
C Estimate the system order.
C
CALL IB01OD( CTRL, NOBR, L, SV, N, TOL, IWARNL, INFO )
IWARN = MAX( IWARN, IWARNL )
C
C Return optimal workspace in DWORK(1).
C
DWORK( 1 ) = MAX( MAXWRK, INT( DWORK( 1 ) ) )
RETURN
C
C *** Last line of IB01AD ***
END
|