File: IB01CD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (823 lines) | stat: -rw-r--r-- 35,070 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
      SUBROUTINE IB01CD( JOBX0, COMUSE, JOB, N, M, L, NSMP, A, LDA, B,
     $                   LDB, C, LDC, D, LDD, U, LDU, Y, LDY, X0, V,
     $                   LDV, TOL, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To estimate the initial state and, optionally, the system matrices
C     B  and  D  of a linear time-invariant (LTI) discrete-time system,
C     given the system matrices  (A,B,C,D),  or (when  B  and  D  are
C     estimated) only the matrix pair  (A,C),  and the input and output
C     trajectories of the system. The model structure is :
C
C           x(k+1) = Ax(k) + Bu(k),   k >= 0,
C           y(k)   = Cx(k) + Du(k),
C
C     where  x(k)  is the  n-dimensional state vector (at time k),
C            u(k)  is the  m-dimensional input vector,
C            y(k)  is the  l-dimensional output vector,
C     and  A, B, C, and D  are real matrices of appropriate dimensions.
C     The input-output data can internally be processed sequentially.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBX0   CHARACTER*1
C             Specifies whether or not the initial state should be
C             computed, as follows:
C             = 'X':  compute the initial state x(0);
C             = 'N':  do not compute the initial state (possibly,
C                     because x(0) is known to be zero).
C
C     COMUSE  CHARACTER*1
C             Specifies whether the system matrices B and D should be
C             computed or used, as follows:
C             = 'C':  compute the system matrices B and D, as specified
C                     by JOB;
C             = 'U':  use the system matrices B and D, as specified by
C                     JOB;
C             = 'N':  do not compute/use the matrices B and D.
C             If  JOBX0 = 'N'  and  COMUSE <> 'N',  then  x(0)  is set
C             to zero.
C             If  JOBX0 = 'N'  and  COMUSE =  'N',  then  x(0)  is
C             neither computed nor set to zero.
C
C     JOB     CHARACTER*1
C             If  COMUSE = 'C'  or  'U',  specifies which of the system
C             matrices  B and D  should be computed or used, as follows:
C             = 'B':  compute/use the matrix B only (D is known to be
C                     zero);
C             = 'D':  compute/use the matrices B and D.
C             The value of  JOB  is irrelevant if  COMUSE = 'N'  or if
C             JOBX0 = 'N'  and  COMUSE = 'U'.
C             The combinations of options, the data used, and the
C             returned results, are given in the table below, where
C             '*'  denotes an irrelevant value.
C
C              JOBX0   COMUSE    JOB     Data used    Returned results
C             ----------------------------------------------------------
C                X       C        B       A,C,u,y          x,B
C                X       C        D       A,C,u,y          x,B,D
C                N       C        B       A,C,u,y          x=0,B
C                N       C        D       A,C,u,y          x=0,B,D
C             ----------------------------------------------------------
C                X       U        B      A,B,C,u,y            x
C                X       U        D      A,B,C,D,u,y          x
C                N       U        *          -               x=0
C             ----------------------------------------------------------
C                X       N        *        A,C,y              x
C                N       N        *          -                -
C             ----------------------------------------------------------
C
C             For  JOBX0 = 'N'  and  COMUSE = 'N',  the routine just
C             sets  DWORK(1)  to 2 and  DWORK(2)  to 1, and returns
C             (see the parameter DWORK).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     L       (input) INTEGER
C             The number of system outputs.  L > 0.
C
C     NSMP    (input) INTEGER
C             The number of rows of matrices  U  and  Y  (number of
C             samples,  t).
C             NSMP >= 0,            if  JOBX0 = 'N'  and  COMUSE <> 'C';
C             NSMP >= N,            if  JOBX0 = 'X'  and  COMUSE <> 'C';
C             NSMP >= N*M + a + e,  if  COMUSE = 'C',
C             where   a = 0,  if  JOBX0 = 'N';
C                     a = N,  if  JOBX0 = 'X';
C                     e = 0,  if  JOBX0 = 'X'  and  JOB = 'B';
C                     e = 1,  if  JOBX0 = 'N'  and  JOB = 'B';
C                     e = M,  if  JOB   = 'D'.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             If  JOBX0 = 'X'  or  COMUSE = 'C',  the leading N-by-N
C             part of this array must contain the system state matrix A.
C             If  N = 0,  or  JOBX0 = 'N'  and  COMUSE <> 'C',  this
C             array is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.
C             LDA >= MAX(1,N),  if  JOBX0 = 'X'  or   COMUSE =  'C';
C             LDA >= 1,         if  JOBX0 = 'N'  and  COMUSE <> 'C'.
C
C     B       (input or output) DOUBLE PRECISION array, dimension
C             (LDB,M)
C             If  JOBX0 = 'X'  and  COMUSE = 'U',  B  is an input
C             parameter and, on entry, the leading N-by-M part of this
C             array must contain the system input matrix  B.
C             If  COMUSE = 'C',  B  is an output parameter and, on exit,
C             if  INFO = 0,  the leading N-by-M part of this array
C             contains the estimated system input matrix  B.
C             If  min(N,M) = 0,  or  JOBX0 = 'N'  and  COMUSE = 'U',
C             or  COMUSE = 'N',  this array is not referenced.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N),  if  M > 0,  COMUSE = 'U',  JOBX0 = 'X',
C                               or  M > 0,  COMUSE = 'C';
C             LDB >= 1,         if  min(N,M) = 0,  or  COMUSE = 'N',
C                               or  JOBX0  = 'N'  and  COMUSE = 'U'.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             If  JOBX0 = 'X'  or  COMUSE = 'C',  the leading L-by-N
C             part of this array must contain the system output
C             matrix  C.
C             If  N = 0,  or  JOBX0 = 'N'  and  COMUSE <> 'C',  this
C             array is not referenced.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDC >= L,  if  N > 0, and  JOBX0 = 'X'  or  COMUSE = 'C';
C             LDC >= 1,  if  N = 0, or  JOBX0 = 'N'  and  COMUSE <> 'C'.
C
C     D       (input or output) DOUBLE PRECISION array, dimension
C             (LDD,M)
C             If  JOBX0 = 'X',  COMUSE = 'U',  and  JOB = 'D',  D  is an
C             input parameter and, on entry, the leading L-by-M part of
C             this array must contain the system input-output matrix  D.
C             If  COMUSE = 'C'  and  JOB = 'D',  D  is an output
C             parameter and, on exit, if  INFO = 0,  the leading
C             L-by-M part of this array contains the estimated system
C             input-output matrix  D.
C             If  M = 0,  or  JOBX0 = 'N'  and  COMUSE = 'U',  or
C             COMUSE = 'N',  or  JOB = 'B',  this array is not
C             referenced.
C
C     LDD     INTEGER
C             The leading dimension of the array D.
C             LDD >= L,  if  M > 0,   JOBX0 = 'X',  COMUSE = 'U',  and
C                                                   JOB = 'D',  or
C                        if  M > 0,  COMUSE = 'C',  and  JOB = 'D';
C             LDD >= 1,  if  M = 0,  or  JOBX0 = 'N'  and  COMUSE = 'U',
C                        or  COMUSE = 'N',  or  JOB = 'B'.
C
C     U       (input or input/output) DOUBLE PRECISION array, dimension
C             (LDU,M)
C             On entry, if  COMUSE = 'C',  or  JOBX0 = 'X'  and
C             COMUSE = 'U',  the leading NSMP-by-M part of this array
C             must contain the t-by-m input-data sequence matrix  U,
C             U = [u_1 u_2 ... u_m].  Column  j  of  U  contains the
C             NSMP  values of the j-th input component for consecutive
C             time increments.
C             On exit, if  COMUSE = 'C'  and  JOB = 'D',  the leading
C             NSMP-by-M part of this array contains details of the
C             QR factorization of the t-by-m matrix  U,  possibly
C             computed sequentially (see METHOD).
C             If  COMUSE = 'C'  and  JOB = 'B',  or  COMUSE = 'U',  this
C             array is unchanged on exit.
C             If  M = 0,  or  JOBX0 = 'N'  and  COMUSE = 'U',  or
C             COMUSE = 'N',  this array is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of the array U.
C             LDU >= MAX(1,NSMP),  if  M > 0    and  COMUSE = 'C'  or
C                                  JOBX0 = 'X'  and  COMUSE = 'U;
C             LDU >= 1,            if  M = 0,   or   COMUSE = 'N',  or
C                                  JOBX0 = 'N'  and  COMUSE = 'U'.
C
C     Y       (input) DOUBLE PRECISION array, dimension (LDY,L)
C             On entry, if  JOBX0 = 'X'  or  COMUSE = 'C',  the leading
C             NSMP-by-L part of this array must contain the t-by-l
C             output-data sequence matrix  Y,  Y = [y_1 y_2 ... y_l].
C             Column  j  of  Y  contains the  NSMP  values of the j-th
C             output component for consecutive time increments.
C             If  JOBX0 = 'N'  and  COMUSE <> 'C',  this array is not
C             referenced.
C
C     LDY     INTEGER
C             The leading dimension of the array Y.
C             LDY >= MAX(1,NSMP),  if  JOBX0 = 'X'  or   COMUSE = 'C;
C             LDY >= 1,            if  JOBX0 = 'N'  and  COMUSE <> 'C'.
C
C     X0      (output) DOUBLE PRECISION array, dimension (N)
C             If  INFO = 0  and  JOBX0 = 'X',  this array contains the
C             estimated initial state of the system,  x(0).
C             If  JOBX0 = 'N'  and  COMUSE = 'C',  this array is used as
C             workspace and finally it is set to zero.
C             If  JOBX0 = 'N'  and  COMUSE = 'U',  then  x(0)  is set to
C             zero without any calculations.
C             If  JOBX0 = 'N'  and  COMUSE = 'N',  this array is not
C             referenced.
C
C     V       (output) DOUBLE PRECISION array, dimension (LDV,N)
C             On exit, if  INFO = 0  or 2,  JOBX0 = 'X'  or
C             COMUSE = 'C',  the leading N-by-N part of this array
C             contains the orthogonal matrix V of a real Schur
C             factorization of the matrix  A.
C             If  JOBX0 = 'N'  and  COMUSE <> 'C',  this array is not
C             referenced.
C
C     LDV     INTEGER
C             The leading dimension of the array V.
C             LDV >= MAX(1,N),  if  JOBX0 = 'X'  or   COMUSE =  'C;
C             LDV >= 1,         if  JOBX0 = 'N'  and  COMUSE <> 'C'.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used for estimating the rank of
C             matrices. If the user sets  TOL > 0,  then the given value
C             of  TOL  is used as a lower bound for the reciprocal
C             condition number;  a matrix whose estimated condition
C             number is less than  1/TOL  is considered to be of full
C             rank.  If the user sets  TOL <= 0,  then  EPS  is used
C             instead, where  EPS  is the relative machine precision
C             (see LAPACK Library routine DLAMCH).  TOL <= 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK), where
C             LIWORK >= 0,          if  JOBX0 = 'N'  and  COMUSE <> 'C';
C             LIWORK >= N,          if  JOBX0 = 'X'  and  COMUSE <> 'C';
C             LIWORK >= N*M + a,        if COMUSE = 'C' and JOB = 'B',
C             LIWORK >= max(N*M + a,M), if COMUSE = 'C' and JOB = 'D',
C             with  a = 0,  if  JOBX0 = 'N';
C                   a = N,  if  JOBX0 = 'X'.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if  INFO = 0,  DWORK(1) returns the optimal value
C             of LDWORK;  DWORK(2)  contains the reciprocal condition
C             number of the triangular factor of the QR factorization of
C             the matrix  W2,  if  COMUSE = 'C',  or of the matrix
C             Gamma,  if  COMUSE = 'U'  (see METHOD); if  JOBX0 = 'N'
C             and  COMUSE <> 'C',  DWORK(2)  is set to one;
C             if  COMUSE = 'C',  M > 0,  and  JOB = 'D',   DWORK(3)
C             contains the reciprocal condition number of the triangular
C             factor of the QR factorization of  U;  denoting
C                g = 2,  if  JOBX0  = 'X'  and  COMUSE <> 'C'  or
C                            COMUSE = 'C'  and  M = 0  or   JOB = 'B',
C                g = 3,  if  COMUSE = 'C'  and  M > 0  and  JOB = 'D',
C             then  DWORK(i), i = g+1:g+N*N,
C                   DWORK(j), j = g+1+N*N:g+N*N+L*N,  and
C                   DWORK(k), k = g+1+N*N+L*N:g+N*N+L*N+N*M,
C             contain the transformed system matrices  At, Ct, and Bt,
C             respectively, corresponding to the real Schur form of the
C             given system state matrix  A,  i.e.,
C                At = V'*A*V,  Bt = V'*B,  Ct = C*V.
C             The matrices  At, Ct, Bt  are not computed if  JOBX0 = 'N'
C             and  COMUSE <> 'C'.
C             On exit, if  INFO = -26,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 2,  if  JOBX0 = 'N'  and  COMUSE <> 'C',  or
C                           if  max( N, M ) = 0.
C             Otherwise,
C             LDWORK >= LDW1 + N*( N + M + L ) +
C                              max( 5*N, LDW1, min( LDW2, LDW3 ) ),
C             where, if  COMUSE = 'C',  then
C             LDW1 = 2,          if  M = 0  or   JOB = 'B',
C             LDW1 = 3,          if  M > 0  and  JOB = 'D',
C             LDWa = t*L*(r + 1) + max( N + max( d, f ), 6*r ),
C             LDW2 = LDWa,       if  M = 0  or  JOB = 'B',
C             LDW2 = max( LDWa, t*L*(r + 1) + 2*M*M + 6*M ),
C                                if  M > 0  and JOB = 'D',
C             LDWb = (b + r)*(r + 1) +
C                     max( q*(r + 1) + N*N*M + c + max( d, f ), 6*r ),
C             LDW3 = LDWb,       if  M = 0  or  JOB = 'B',
C             LDW3 = max( LDWb, (b + r)*(r + 1) + 2*M*M + 6*M ),
C                                if  M > 0  and JOB = 'D',
C                r = N*M + a,
C                a = 0,                  if  JOBX0 = 'N',
C                a = N,                  if  JOBX0 = 'X';
C                b = 0,                  if  JOB   = 'B',
C                b = L*M,                if  JOB   = 'D';
C                c = 0,                  if  JOBX0 = 'N',
C                c = L*N,                if  JOBX0 = 'X';
C                d = 0,                  if  JOBX0 = 'N',
C                d = 2*N*N + N,          if  JOBX0 = 'X';
C                f = 2*r,                if  JOB   = 'B'   or  M = 0,
C                f = M + max( 2*r, M ),  if  JOB   = 'D'  and  M > 0;
C                q = b + r*L;
C             and, if  JOBX0 = 'X'  and  COMUSE <> 'C',  then
C             LDW1 = 2,
C             LDW2 = t*L*(N + 1) + 2*N + max( 2*N*N, 4*N ),
C             LDW3 = N*(N + 1) + 2*N + max( q*(N + 1) + 2*N*N + L*N,
C                                           4*N ),
C                q = N*L.
C             For good performance,  LDWORK  should be larger.
C             If  LDWORK >= LDW2,  or if  COMUSE = 'C'  and
C                 LDWORK >= t*L*(r + 1) + (b + r)*(r + 1) + N*N*M + c +
C                           max( d, f ),
C             then standard QR factorizations of the matrices  U  and/or
C             W2,  if  COMUSE = 'C',  or of the matrix  Gamma,  if
C             JOBX0 = 'X'  and  COMUSE <> 'C'  (see METHOD), are used.
C             Otherwise, the QR factorizations are computed sequentially
C             by performing  NCYCLE  cycles, each cycle (except possibly
C             the last one) processing  s < t  samples, where  s  is
C             chosen by equating  LDWORK  to the first term of  LDWb,
C             if  COMUSE = 'C',  or of  LDW3,  if  COMUSE <> 'C',  for
C             q  replaced by  s*L.  (s  is larger than or equal to the
C             minimum value of  NSMP.)  The computational effort may
C             increase and the accuracy may slightly decrease with the
C             decrease of  s.  Recommended value is  LDWORK = LDW2,
C             assuming a large enough cache size, to also accommodate
C             A,  (B,)  C,  (D,)  U,  and  Y.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 4:  the least squares problem to be solved has a
C                   rank-deficient coefficient matrix;
C             = 6:  the matrix  A  is unstable;  the estimated  x(0)
C                   and/or  B and D  could be inaccurate.
C             NOTE: the value 4 of  IWARN  has no significance for the
C                   identification problem.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the QR algorithm failed to compute all the
C                   eigenvalues of the matrix A (see LAPACK Library
C                   routine DGEES); the locations  DWORK(i),  for
C                   i = g+1:g+N*N,  contain the partially converged
C                   Schur form;
C             = 2:  the singular value decomposition (SVD) algorithm did
C                   not converge.
C
C     METHOD
C
C     Matrix  A  is initially reduced to a real Schur form, A = V*At*V',
C     and the given system matrices are transformed accordingly. For the
C     reduced system, an extension and refinement of the method in [1,2]
C     is used. Specifically, for  JOBX0 = 'X',  COMUSE = 'C',  and
C     JOB = 'D',  denoting
C
C           X = [ vec(D')' vec(B)' x0' ]',
C
C     where  vec(M)  is the vector obtained by stacking the columns of
C     the matrix  M,  then  X  is the least squares solution of the
C     system  S*X = vec(Y),  with the matrix  S = [ diag(U)  W ],
C     defined by
C
C           ( U         |     | ... |     |     | ... |     |         )
C           (   U       |  11 | ... |  n1 |  12 | ... |  nm |         )
C       S = (     :     | y   | ... | y   | y   | ... | y   | P*Gamma ),
C           (       :   |     | ... |     |     | ... |     |         )
C           (         U |     | ... |     |     | ... |     |         )
C                                                                     ij
C     diag(U)  having  L  block rows and columns.  In this formula,  y
C     are the outputs of the system for zero initial state computed
C     using the following model, for j = 1:m, and for i = 1:n,
C            ij          ij                    ij
C           x  (k+1) = Ax  (k) + e_i u_j(k),  x  (0) = 0,
C
C            ij          ij
C           y  (k)   = Cx  (k),
C
C     where  e_i  is the i-th n-dimensional unit vector,  Gamma  is
C     given by
C
C                (     C     )
C                (    C*A    )
C        Gamma = (   C*A^2   ),
C                (     :     )
C                ( C*A^(t-1) )
C
C     and  P  is a permutation matrix that groups together the rows of
C     Gamma  depending on the same row of  C,  namely
C     [ c_j;  c_j*A;  c_j*A^2; ...  c_j*A^(t-1) ],  for j = 1:L.
C     The first block column,  diag(U),  is not explicitly constructed,
C     but its structure is exploited. The last block column is evaluated
C     using powers of A with exponents 2^k. No interchanges are applied.
C     A special QR decomposition of the matrix  S  is computed. Let
C     U = q*[ r' 0 ]'  be the QR decomposition of  U,  if  M > 0,  where
C     r  is  M-by-M.   Then,  diag(q')  is applied to  W  and  vec(Y).
C     The block-rows of  S  and  vec(Y)  are implicitly permuted so that
C     matrix  S  becomes
C
C        ( diag(r)  W1 )
C        (    0     W2 ),
C
C     where  W1  has L*M rows. Then, the QR decomposition of  W2 is
C     computed (sequentially, if  M > 0) and used to obtain  B  and  x0.
C     The intermediate results and the QR decomposition of  U  are
C     needed to find  D.  If a triangular factor is too ill conditioned,
C     then singular value decomposition (SVD) is employed. SVD is not
C     generally needed if the input sequence is sufficiently
C     persistently exciting and  NSMP  is large enough.
C     If the matrix  W  cannot be stored in the workspace (i.e.,
C     LDWORK < LDW2),  the QR decompositions of  W2  and  U  are
C     computed sequentially.
C     For  JOBX0 = 'N'  and  COMUSE = 'C',  or  JOB = 'B',  a simpler
C     problem is solved efficiently.
C
C     For  JOBX0 = 'X'  and  COMUSE <> 'C',  a simpler method is used.
C     Specifically, the output y0(k) of the system for zero initial
C     state is computed for k = 0, 1, ...,  t-1 using the given model.
C     Then the following least squares problem is solved for x(0)
C
C                         (   y(0) - y0(0)   )
C                         (   y(1) - y0(1)   )
C        Gamma * x(0)  =  (        :         ).
C                         (        :         )
C                         ( y(t-1) - y0(t-1) )
C
C     The coefficient matrix  Gamma  is evaluated using powers of A with
C     exponents 2^k. The QR decomposition of this matrix is computed.
C     If its triangular factor  R  is too ill conditioned, then singular
C     value decomposition of  R  is used.
C     If the coefficient matrix cannot be stored in the workspace (i.e.,
C     LDWORK < LDW2),  the QR decomposition is computed sequentially.
C
C
C     REFERENCES
C
C     [1] Verhaegen M., and Varga, A.
C         Some Experience with the MOESP Class of Subspace Model
C         Identification Methods in Identifying the BO105 Helicopter.
C         Report TR R165-94, DLR Oberpfaffenhofen, 1994.
C
C     [2] Sima, V., and Varga, A.
C         RASP-IDENT : Subspace Model Identification Programs.
C         Deutsche Forschungsanstalt fur Luft- und Raumfahrt e. V.,
C         Report TR R888-94, DLR Oberpfaffenhofen, Oct. 1994.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C
C     FURTHER COMMENTS
C
C     The algorithm for computing the system matrices  B  and  D  is
C     less efficient than the MOESP or N4SID algorithms implemented in
C     SLICOT Library routines IB01BD/IB01PD, because a large least
C     squares problem has to be solved, but the accuracy is better, as
C     the computed matrices  B  and  D  are fitted to the input and
C     output trajectories. However, if matrix  A  is unstable, the
C     computed matrices  B  and  D  could be inaccurate.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Identification methods; least squares solutions; multivariable
C     systems; QR decomposition; singular value decomposition.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO  = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                     THREE = 3.0D0 )
C     .. Scalar Arguments ..
      DOUBLE PRECISION   TOL
      INTEGER            INFO, IWARN, L, LDA, LDB, LDC, LDD, LDU, LDV,
     $                   LDWORK, LDY, M, N, NSMP
      CHARACTER          COMUSE, JOB, JOBX0
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA, *), B(LDB, *), C(LDC, *), D(LDD, *),
     $                   DWORK(*),  U(LDU, *), V(LDV, *), X0(*),
     $                   Y(LDY, *)
      INTEGER            IWORK(*)
C     .. Local Scalars ..
      DOUBLE PRECISION   RCOND, RCONDU
      INTEGER            I, IA, IB, IC, IERR, IQ, ISIZE, ITAU, IWARNL,
     $                   IWI, IWR, JWORK, LDW, LDW2, LDW3, LM, LN,
     $                   MAXWRK, MINSMP, MINWLS, MINWRK, MTMP, N2M,
     $                   NCOL, NCP1, NM, NN, NSMPL
      LOGICAL            COMPBD, USEBD, MAXDIA, MAXDIM, WITHB, WITHD,
     $                   WITHX0
      CHARACTER          JOBD
C     .. Local Arrays ..
      DOUBLE PRECISION   DUM(1)
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2, ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DGEMV, DLACPY, IB01QD, IB01RD,
     $                   TB01WD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
C     .. Executable Statements ..
C
C     Check the input parameters.
C
      WITHX0 = LSAME( JOBX0,  'X' )
      COMPBD = LSAME( COMUSE, 'C' )
      USEBD  = LSAME( COMUSE, 'U' )
      WITHD  = LSAME( JOB,    'D' )
      WITHB  = LSAME( JOB,    'B' )   .OR. WITHD
      MAXDIM = ( WITHX0 .AND. USEBD ) .OR. COMPBD
      MAXDIA = WITHX0 .OR. COMPBD
C
      IWARN = 0
      INFO  = 0
      LDW   = MAX( 1, N )
      LM    = L*M
      LN    = L*N
      NN    = N*N
      NM    = N*M
      N2M   = N*NM
      IF( COMPBD ) THEN
         NCOL = NM
         IF( WITHX0 )
     $      NCOL = NCOL + N
         MINSMP = NCOL
         IF( WITHD ) THEN
            MINSMP = MINSMP + M
            IQ     = MINSMP
         ELSE IF ( .NOT.WITHX0 ) THEN
            IQ     = MINSMP
            MINSMP = MINSMP + 1
         ELSE
            IQ     = MINSMP
         END IF
      ELSE
         NCOL = N
         IF( WITHX0 ) THEN
            MINSMP = N
         ELSE
            MINSMP = 0
         END IF
         IQ = MINSMP
      END IF
C
      IF( .NOT.( WITHX0 .OR. LSAME( JOBX0, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( COMPBD .OR. USEBD .OR. LSAME( COMUSE, 'N' ) ) )
     $      THEN
         INFO = -2
      ELSE IF( .NOT.WITHB ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( L.LE.0 ) THEN
         INFO = -6
      ELSE IF( NSMP.LT.MINSMP ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR. ( MAXDIA .AND. LDA.LT.LDW ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. MAXDIM .AND. LDB.LT.LDW ) )
     $      THEN
         INFO = -11
      ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. MAXDIA .AND. LDC.LT.L ) )
     $      THEN
         INFO = -13
      ELSE IF( LDD.LT.1 .OR. ( M.GT.0 .AND. MAXDIM .AND. WITHD .AND.
     $         LDD.LT.L ) ) THEN
         INFO = -15
      ELSE IF( LDU.LT.1 .OR. ( M.GT.0 .AND. MAXDIM .AND. LDU.LT.NSMP ) )
     $      THEN
         INFO = -17
      ELSE IF( LDY.LT.1 .OR. ( MAXDIA .AND. LDY.LT.NSMP ) ) THEN
         INFO = -19
      ELSE IF( LDV.LT.1 .OR. ( MAXDIA .AND. LDV.LT.LDW ) ) THEN
         INFO = -22
      ELSE IF( TOL.GT.ONE ) THEN
         INFO = -23
      END IF
C
C     Compute workspace.
C      (Note: Comments in the code beginning "Workspace:" describe the
C       minimal amount of workspace needed at that point in the code,
C       as well as the preferred amount for good performance.
C       NB refers to the optimal block size for the immediately
C       following subroutine, as returned by ILAENV.)
C
      IF ( .NOT.MAXDIA .OR. MAX( N, M ).EQ.0 ) THEN
         MINWRK = 2
      ELSE
         NSMPL = NSMP*L
         IQ    = IQ*L
         NCP1  = NCOL + 1
         ISIZE = NSMPL*NCP1
         IF ( COMPBD ) THEN
            IF ( N.GT.0 .AND. WITHX0 ) THEN
               IC = 2*NN + N
            ELSE
               IC = 0
            END IF
         ELSE
            IC = 2*NN
         END IF
         MINWLS = NCOL*NCP1
         IF ( COMPBD ) THEN
            IF ( WITHD )
     $         MINWLS = MINWLS + LM*NCP1
            IF ( M.GT.0 .AND. WITHD ) THEN
               IA = M + MAX( 2*NCOL, M )
            ELSE
               IA = 2*NCOL
            END IF
            ITAU = N2M + MAX( IC, IA )
            IF ( WITHX0 )
     $         ITAU = ITAU + LN
            LDW2 = ISIZE  + MAX( N + MAX( IC, IA ), 6*NCOL )
            LDW3 = MINWLS + MAX( IQ*NCP1 + ITAU, 6*NCOL )
            IF ( M.GT.0 .AND. WITHD ) THEN
               LDW2 = MAX( LDW2, ISIZE  + 2*M*M + 6*M )
               LDW3 = MAX( LDW3, MINWLS + 2*M*M + 6*M )
               IA   = 3
            ELSE
               IA = 2
            END IF
         ELSE
            ITAU = IC + LN
            LDW2 = ISIZE  + 2*N + MAX( IC, 4*N )
            LDW3 = MINWLS + 2*N + MAX( IQ*NCP1 + ITAU, 4*N )
            IA   = 2
         END IF
         MINWRK = IA + NN + NM + LN + MAX( 5*N, IA, MIN( LDW2, LDW3 ) )
C
         IF ( INFO.EQ.0 .AND. LDWORK.GE.MINWRK ) THEN
            MAXWRK = MAX( 5*N, IA )
            IF ( COMPBD ) THEN
               IF ( M.GT.0 .AND. WITHD ) THEN
                  MAXWRK = MAX( MAXWRK, ISIZE + N + M +
     $                          MAX( M*ILAENV( 1, 'DGEQRF', ' ', NSMP,
     $                                         M, -1, -1 ),
     $                               NCOL + NCOL*ILAENV( 1, 'DGEQRF',
     $                                   ' ', NSMP-M, NCOL, -1, -1 ) ) )
                  MAXWRK = MAX( MAXWRK, ISIZE + N + M +
     $                          MAX( NCP1*ILAENV( 1, 'DORMQR', 'LT',
     $                                            NSMP, NCP1, M, -1 ),
     $                               NCOL + ILAENV( 1, 'DORMQR', 'LT',
     $                                         NSMP-M, 1, NCOL, -1 ) ) )
               ELSE
                  MAXWRK = MAX( MAXWRK, ISIZE + N + NCOL +
     $                                  MAX( NCOL*ILAENV( 1, 'DGEQRF',
     $                                       ' ', NSMPL, NCOL, -1, -1 ),
     $                                       ILAENV( 1, 'DORMQR', 'LT',
     $                                          NSMPL, 1, NCOL, -1 ) ) )
               END IF
            ELSE
               MAXWRK = MAX( MAXWRK, ISIZE + 2*N +
     $                               MAX( N*ILAENV( 1, 'DGEQRF', ' ',
     $                                              NSMPL, N, -1, -1 ),
     $                                    ILAENV( 1, 'DORMQR', 'LT',
     $                                            NSMPL, 1, N, -1 ) ) )
            END IF
            MAXWRK = IA + NN + NM + LN + MAXWRK
            MAXWRK = MAX( MAXWRK, MINWRK )
         END IF
      END IF
C
      IF ( INFO.EQ.0 .AND. LDWORK.LT.MINWRK ) THEN
         INFO = -26
         DWORK(1) = MINWRK
      END IF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'IB01CD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( .NOT.MAXDIA .OR. MAX( N, M ).EQ.0 ) THEN
         DWORK(2) = ONE
         IF ( COMPBD .AND. M.GT.0 .AND. WITHD ) THEN
            DWORK(1) = THREE
            DWORK(3) = ONE
         ELSE
            DWORK(1) = TWO
         END IF
         IF ( N.GT.0 .AND. USEBD ) THEN
            DUM(1) = ZERO
            CALL DCOPY( N, DUM, 0, X0, 1 )
         END IF
         RETURN
      END IF
C
C     Compute the Schur factorization of  A  and transform the other
C     given system matrices accordingly.
C     Workspace:  need   g + N*N + L*N + N*M + 5*N,  where
C                        g = 2,  if  M = 0, COMUSE = 'C', or  JOB = 'B',
C                        g = 3,  if  M > 0, COMUSE = 'C', and JOB = 'D',
C                        g = 2,  if  JOBX0 = 'X'  and  COMUSE <> 'C';
C                 prefer larger.
C
      IA = IA + 1
      IC = IA + NN
      IB = IC + LN
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK(IA), LDW )
      CALL DLACPY( 'Full', L, N, C, LDC, DWORK(IC), L )
C
      IF ( USEBD ) THEN
         MTMP = M
         CALL DLACPY( 'Full', N, M, B, LDB, DWORK(IB), LDW )
      ELSE
         MTMP = 0
      END IF
      IWR   = IB  + NM
      IWI   = IWR + N
      JWORK = IWI + N
C
      CALL TB01WD( N, MTMP, L, DWORK(IA), LDW, DWORK(IB), LDW,
     $             DWORK(IC), L, V, LDV, DWORK(IWR), DWORK(IWI),
     $             DWORK(JWORK), LDWORK-JWORK+1, IERR )
      IF( IERR.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
      MAXWRK = MAX( MAXWRK, INT( DWORK( JWORK ) ) + JWORK - 1 )
C
      DO 10 I = IWR, IWI - 1
         IF( DLAPY2( DWORK(I), DWORK(I+N) ).GE.ONE )
     $      IWARN = 6
   10 CONTINUE
C
      JWORK = IWR
C
C     Estimate  x(0)  and/or the system matrices  B and D.
C     Workspace: need   g + N*N + L*N + N*M +
C                           max( g, min( LDW2, LDW3 ) ) (see LDWORK);
C                prefer larger.
C
      IF ( COMPBD ) THEN
         CALL IB01QD( JOBX0, JOB, N, M, L, NSMP, DWORK(IA), LDW,
     $                DWORK(IC), L, U, LDU, Y, LDY, X0, DWORK(IB), LDW,
     $                D, LDD, TOL, IWORK, DWORK(JWORK), LDWORK-JWORK+1,
     $                IWARNL, INFO )
C
         IF( INFO.EQ.0 ) THEN
            IF ( M.GT.0 .AND. WITHD )
     $         RCONDU = DWORK(JWORK+2)
C
C           Compute the system input matrix  B  corresponding to the
C           original system.
C
            CALL DGEMM( 'NoTranspose', 'NoTranspose', N, M, N, ONE,
     $                  V, LDV, DWORK(IB), LDW, ZERO, B, LDB )
         END IF
      ELSE
         IF ( WITHD ) THEN
            JOBD = 'N'
         ELSE
            JOBD = 'Z'
         END IF
C
         CALL IB01RD( JOBD, N, MTMP, L, NSMP, DWORK(IA), LDW, DWORK(IB),
     $                LDW, DWORK(IC), L, D, LDD, U, LDU, Y, LDY, X0,
     $                TOL, IWORK, DWORK(JWORK), LDWORK-JWORK+1, IWARNL,
     $                INFO )
      END IF
      IWARN = MAX( IWARN, IWARNL )
C
      IF( INFO.EQ.0 ) THEN
         RCOND  = DWORK(JWORK+1)
         MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
         IF( WITHX0 ) THEN
C
C           Transform the initial state estimate to obtain the initial
C           state corresponding to the original system.
C           Workspace: need g + N*N + L*N + N*M + N.
C
            CALL DGEMV( 'NoTranspose', N, N, ONE, V, LDV, X0, 1, ZERO,
     $                  DWORK(JWORK), 1 )
            CALL DCOPY( N, DWORK(JWORK), 1, X0, 1 )
         END IF
C
         DWORK(1) = MAXWRK
         DWORK(2) = RCOND
         IF ( COMPBD .AND. M.GT.0 .AND. WITHD )
     $      DWORK(3) = RCONDU
      END IF
      RETURN
C
C *** End of IB01CD ***
      END