1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
SUBROUTINE IB01PD( METH, JOB, JOBCV, NOBR, N, M, L, NSMPL, R,
$ LDR, A, LDA, C, LDC, B, LDB, D, LDD, Q, LDQ,
$ RY, LDRY, S, LDS, O, LDO, TOL, IWORK, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate the matrices A, C, B, and D of a linear time-invariant
C (LTI) state space model, using the singular value decomposition
C information provided by other routines. Optionally, the system and
C noise covariance matrices, needed for the Kalman gain, are also
C determined.
C
C ARGUMENTS
C
C Mode Parameters
C
C METH CHARACTER*1
C Specifies the subspace identification method to be used,
C as follows:
C = 'M': MOESP algorithm with past inputs and outputs;
C = 'N': N4SID algorithm.
C
C JOB CHARACTER*1
C Specifies which matrices should be computed, as follows:
C = 'A': compute all system matrices, A, B, C, and D;
C = 'C': compute the matrices A and C only;
C = 'B': compute the matrix B only;
C = 'D': compute the matrices B and D only.
C
C JOBCV CHARACTER*1
C Specifies whether or not the covariance matrices are to
C be computed, as follows:
C = 'C': the covariance matrices should be computed;
C = 'N': the covariance matrices should not be computed.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C Hankel matrices processed by other routines. NOBR > 1.
C
C N (input) INTEGER
C The order of the system. NOBR > N > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C NSMPL (input) INTEGER
C If JOBCV = 'C', the total number of samples used for
C calculating the covariance matrices.
C NSMPL >= 2*(M+L)*NOBR.
C This parameter is not meaningful if JOBCV = 'N'.
C
C R (input/workspace) DOUBLE PRECISION array, dimension
C ( LDR,2*(M+L)*NOBR )
C On entry, the leading 2*(M+L)*NOBR-by-2*(M+L)*NOBR part
C of this array must contain the relevant data for the MOESP
C or N4SID algorithms, as constructed by SLICOT Library
C routines IB01AD or IB01ND. Let R_ij, i,j = 1:4, be the
C ij submatrix of R (denoted S in IB01AD and IB01ND),
C partitioned by M*NOBR, L*NOBR, M*NOBR, and L*NOBR
C rows and columns. The submatrix R_22 contains the matrix
C of left singular vectors used. Also needed, for
C METH = 'N' or JOBCV = 'C', are the submatrices R_11,
C R_14 : R_44, and, for METH = 'M' and JOB <> 'C', the
C submatrices R_31 and R_12, containing the processed
C matrices R_1c and R_2c, respectively, as returned by
C SLICOT Library routines IB01AD or IB01ND.
C Moreover, if METH = 'N' and JOB = 'A' or 'C', the
C block-row R_41 : R_43 must contain the transpose of the
C block-column R_14 : R_34 as returned by SLICOT Library
C routines IB01AD or IB01ND.
C The remaining part of R is used as workspace.
C On exit, part of this array is overwritten. Specifically,
C if METH = 'M', R_22 and R_31 are overwritten if
C JOB = 'B' or 'D', and R_12, R_22, R_14 : R_34,
C and possibly R_11 are overwritten if JOBCV = 'C';
C if METH = 'N', all needed submatrices are overwritten.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= 2*(M+L)*NOBR.
C
C A (input or output) DOUBLE PRECISION array, dimension
C (LDA,N)
C On entry, if METH = 'N' and JOB = 'B' or 'D', the
C leading N-by-N part of this array must contain the system
C state matrix.
C If METH = 'M' or (METH = 'N' and JOB = 'A' or 'C'),
C this array need not be set on input.
C On exit, if JOB = 'A' or 'C' and INFO = 0, the
C leading N-by-N part of this array contains the system
C state matrix.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= N, if JOB = 'A' or 'C', or METH = 'N' and
C JOB = 'B' or 'D';
C LDA >= 1, otherwise.
C
C C (input or output) DOUBLE PRECISION array, dimension
C (LDC,N)
C On entry, if METH = 'N' and JOB = 'B' or 'D', the
C leading L-by-N part of this array must contain the system
C output matrix.
C If METH = 'M' or (METH = 'N' and JOB = 'A' or 'C'),
C this array need not be set on input.
C On exit, if JOB = 'A' or 'C' and INFO = 0, or
C INFO = 3 (or INFO >= 0, for METH = 'M'), the leading
C L-by-N part of this array contains the system output
C matrix.
C
C LDC INTEGER
C The leading dimension of the array C.
C LDC >= L, if JOB = 'A' or 'C', or METH = 'N' and
C JOB = 'B' or 'D';
C LDC >= 1, otherwise.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C If M > 0, JOB = 'A', 'B', or 'D' and INFO = 0, the
C leading N-by-M part of this array contains the system
C input matrix. If M = 0 or JOB = 'C', this array is
C not referenced.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= N, if M > 0 and JOB = 'A', 'B', or 'D';
C LDB >= 1, if M = 0 or JOB = 'C'.
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M)
C If M > 0, JOB = 'A' or 'D' and INFO = 0, the leading
C L-by-M part of this array contains the system input-output
C matrix. If M = 0 or JOB = 'C' or 'B', this array is
C not referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if M > 0 and JOB = 'A' or 'D';
C LDD >= 1, if M = 0 or JOB = 'C' or 'B'.
C
C Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
C If JOBCV = 'C', the leading N-by-N part of this array
C contains the positive semidefinite state covariance matrix
C to be used as state weighting matrix when computing the
C Kalman gain.
C This parameter is not referenced if JOBCV = 'N'.
C
C LDQ INTEGER
C The leading dimension of the array Q.
C LDQ >= N, if JOBCV = 'C';
C LDQ >= 1, if JOBCV = 'N'.
C
C RY (output) DOUBLE PRECISION array, dimension (LDRY,L)
C If JOBCV = 'C', the leading L-by-L part of this array
C contains the positive (semi)definite output covariance
C matrix to be used as output weighting matrix when
C computing the Kalman gain.
C This parameter is not referenced if JOBCV = 'N'.
C
C LDRY INTEGER
C The leading dimension of the array RY.
C LDRY >= L, if JOBCV = 'C';
C LDRY >= 1, if JOBCV = 'N'.
C
C S (output) DOUBLE PRECISION array, dimension (LDS,L)
C If JOBCV = 'C', the leading N-by-L part of this array
C contains the state-output cross-covariance matrix to be
C used as cross-weighting matrix when computing the Kalman
C gain.
C This parameter is not referenced if JOBCV = 'N'.
C
C LDS INTEGER
C The leading dimension of the array S.
C LDS >= N, if JOBCV = 'C';
C LDS >= 1, if JOBCV = 'N'.
C
C O (output) DOUBLE PRECISION array, dimension ( LDO,N )
C If METH = 'M' and JOBCV = 'C', or METH = 'N',
C the leading L*NOBR-by-N part of this array contains
C the estimated extended observability matrix, i.e., the
C first N columns of the relevant singular vectors.
C If METH = 'M' and JOBCV = 'N', this array is not
C referenced.
C
C LDO INTEGER
C The leading dimension of the array O.
C LDO >= L*NOBR, if JOBCV = 'C' or METH = 'N';
C LDO >= 1, otherwise.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = N, if METH = 'M' and M = 0
C or JOB = 'C' and JOBCV = 'N';
C LIWORK = M*NOBR+N, if METH = 'M', JOB = 'C',
C and JOBCV = 'C';
C LIWORK = max(L*NOBR,M*NOBR), if METH = 'M', JOB <> 'C',
C and JOBCV = 'N';
C LIWORK = max(L*NOBR,M*NOBR+N), if METH = 'M', JOB <> 'C',
C and JOBCV = 'C';
C LIWORK = max(M*NOBR+N,M*(N+L)), if METH = 'N'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and DWORK(2), DWORK(3), DWORK(4), and
C DWORK(5) contain the reciprocal condition numbers of the
C triangular factors of the matrices, defined in the code,
C GaL (GaL = Un(1:(s-1)*L,1:n)), R_1c (if METH = 'M'),
C M (if JOBCV = 'C' or METH = 'N'), and Q or T (see
C SLICOT Library routines IB01PY or IB01PX), respectively.
C If METH = 'N', DWORK(3) is set to one without any
C calculations. Similarly, if METH = 'M' and JOBCV = 'N',
C DWORK(4) is set to one. If M = 0 or JOB = 'C',
C DWORK(3) and DWORK(5) are set to one.
C On exit, if INFO = -30, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( LDW1,LDW2 ), where, if METH = 'M',
C LDW1 >= max( 2*(L*NOBR-L)*N+2*N, (L*NOBR-L)*N+N*N+7*N ),
C if JOB = 'C' or JOB = 'A' and M = 0;
C LDW1 >= max( 2*(L*NOBR-L)*N+N*N+7*N,
C (L*NOBR-L)*N+N+6*M*NOBR, (L*NOBR-L)*N+N+
C max( L+M*NOBR, L*NOBR +
C max( 3*L*NOBR+1, M ) ) )
C if M > 0 and JOB = 'A', 'B', or 'D';
C LDW2 >= 0, if JOBCV = 'N';
C LDW2 >= max( (L*NOBR-L)*N+Aw+2*N+max(5*N,(2*M+L)*NOBR+L),
C 4*(M*NOBR+N)+1, M*NOBR+2*N+L ),
C if JOBCV = 'C',
C where Aw = N+N*N, if M = 0 or JOB = 'C';
C Aw = 0, otherwise;
C and, if METH = 'N',
C LDW1 >= max( (L*NOBR-L)*N+2*N+(2*M+L)*NOBR+L,
C 2*(L*NOBR-L)*N+N*N+8*N, N+4*(M*NOBR+N)+1,
C M*NOBR+3*N+L );
C LDW2 >= 0, if M = 0 or JOB = 'C';
C LDW2 >= M*NOBR*(N+L)*(M*(N+L)+1)+
C max( (N+L)**2, 4*M*(N+L)+1 ),
C if M > 0 and JOB = 'A', 'B', or 'D'.
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: a least squares problem to be solved has a
C rank-deficient coefficient matrix;
C = 5: the computed covariance matrices are too small.
C The problem seems to be a deterministic one.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge;
C = 3: a singular upper triangular matrix was found.
C
C METHOD
C
C In the MOESP approach, the matrices A and C are first
C computed from an estimated extended observability matrix [1],
C and then, the matrices B and D are obtained by solving an
C extended linear system in a least squares sense.
C In the N4SID approach, besides the estimated extended
C observability matrix, the solutions of two least squares problems
C are used to build another least squares problem, whose solution
C is needed to compute the system matrices A, C, B, and D. The
C solutions of the two least squares problems are also optionally
C used by both approaches to find the covariance matrices.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error state-
C space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Van Overschee, P., and De Moor, B.
C N4SID: Two Subspace Algorithms for the Identification
C of Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [3] Van Overschee, P.
C Subspace Identification : Theory - Implementation -
C Applications.
C Ph. D. Thesis, Department of Electrical Engineering,
C Katholieke Universiteit Leuven, Belgium, Feb. 1995.
C
C [4] Sima, V.
C Subspace-based Algorithms for Multivariable System
C Identification.
C Studies in Informatics and Control, 5, pp. 335-344, 1996.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C FURTHER COMMENTS
C
C In some applications, it is useful to compute the system matrices
C using two calls to this routine, the first one with JOB = 'C',
C and the second one with JOB = 'B' or 'D'. This is slightly less
C efficient than using a single call with JOB = 'A', because some
C calculations are repeated. If METH = 'N', all the calculations
C at the first call are performed again at the second call;
C moreover, it is required to save the needed submatrices of R
C before the first call and restore them before the second call.
C If the covariance matrices are desired, JOBCV should be set
C to 'C' at the second call. If B and D are both needed, they
C should be computed at once.
C It is possible to compute the matrices A and C using the MOESP
C algorithm (METH = 'M'), and the matrices B and D using the N4SID
C algorithm (METH = 'N'). This combination could be slightly more
C efficient than N4SID algorithm alone and it could be more accurate
C than MOESP algorithm. No saving/restoring is needed in such a
C combination, provided JOBCV is set to 'N' at the first call.
C Recommended usage: either one call with JOB = 'A', or
C first call with METH = 'M', JOB = 'C', JOBCV = 'N',
C second call with METH = 'M', JOB = 'D', JOBCV = 'C', or
C first call with METH = 'M', JOB = 'C', JOBCV = 'N',
C second call with METH = 'N', JOB = 'D', JOBCV = 'C'.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 1999.
C
C REVISIONS
C
C March 2000, Feb. 2001, Sep. 2001, March 2005.
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDA, LDB, LDC, LDD, LDO, LDQ,
$ LDR, LDRY, LDS, LDWORK, M, N, NOBR, NSMPL
CHARACTER JOB, JOBCV, METH
C .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *), D(LDD, *),
$ DWORK(*), O(LDO, *), Q(LDQ, *), R(LDR, *),
$ RY(LDRY, *), S(LDS, *)
INTEGER IWORK( * )
C .. Local Scalars ..
DOUBLE PRECISION EPS, RCOND1, RCOND2, RCOND3, RCOND4, RNRM,
$ SVLMAX, THRESH, TOLL, TOLL1
INTEGER I, IAW, ID, IERR, IGAL, IHOUS, ISV, ITAU,
$ ITAU1, ITAU2, IU, IUN2, IWARNL, IX, JWORK,
$ LDUN2, LDUNN, LDW, LMMNOB, LMMNOL, LMNOBR,
$ LNOBR, LNOBRN, MAXWRK, MINWRK, MNOBR, MNOBRN,
$ N2, NCOL, NN, NPL, NR, NR2, NR3, NR4, NR4MN,
$ NR4PL, NROW, RANK, RANK11, RANKM
CHARACTER FACT, JOBP, JOBPY
LOGICAL FULLR, MOESP, N4SID, SHIFT, WITHAL, WITHB,
$ WITHC, WITHCO, WITHD
C .. Local Array ..
DOUBLE PRECISION SVAL(3)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEQRF, DLACPY, DLASET, DORMQR,
$ DSYRK, DTRCON, DTRSM, DTRTRS, IB01PX, IB01PY,
$ MA02AD, MA02ED, MB02QY, MB02UD, MB03OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MOESP = LSAME( METH, 'M' )
N4SID = LSAME( METH, 'N' )
WITHAL = LSAME( JOB, 'A' )
WITHC = LSAME( JOB, 'C' ) .OR. WITHAL
WITHD = LSAME( JOB, 'D' ) .OR. WITHAL
WITHB = LSAME( JOB, 'B' ) .OR. WITHD
WITHCO = LSAME( JOBCV, 'C' )
MNOBR = M*NOBR
LNOBR = L*NOBR
LMNOBR = LNOBR + MNOBR
LMMNOB = LNOBR + 2*MNOBR
MNOBRN = MNOBR + N
LNOBRN = LNOBR - N
LDUN2 = LNOBR - L
LDUNN = LDUN2*N
LMMNOL = LMMNOB + L
NR = LMNOBR + LMNOBR
NPL = N + L
N2 = N + N
NN = N*N
MINWRK = 1
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.( MOESP .OR. N4SID ) ) THEN
INFO = -1
ELSE IF( .NOT.( WITHB .OR. WITHC ) ) THEN
INFO = -2
ELSE IF( .NOT.( WITHCO .OR. LSAME( JOBCV, 'N' ) ) ) THEN
INFO = -3
ELSE IF( NOBR.LE.1 ) THEN
INFO = -4
ELSE IF( N.LE.0 .OR. N.GE.NOBR ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( L.LE.0 ) THEN
INFO = -7
ELSE IF( WITHCO .AND. NSMPL.LT.NR ) THEN
INFO = -8
ELSE IF( LDR.LT.NR ) THEN
INFO = -10
ELSE IF( LDA.LT.1 .OR. ( ( WITHC .OR. ( WITHB .AND. N4SID ) )
$ .AND. LDA.LT.N ) ) THEN
INFO = -12
ELSE IF( LDC.LT.1 .OR. ( ( WITHC .OR. ( WITHB .AND. N4SID ) )
$ .AND. LDC.LT.L ) ) THEN
INFO = -14
ELSE IF( LDB.LT.1 .OR. ( WITHB .AND. LDB.LT.N .AND. M.GT.0 ) )
$ THEN
INFO = -16
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L .AND. M.GT.0 ) )
$ THEN
INFO = -18
ELSE IF( LDQ.LT.1 .OR. ( WITHCO .AND. LDQ.LT.N ) ) THEN
INFO = -20
ELSE IF( LDRY.LT.1 .OR. ( WITHCO .AND. LDRY.LT.L ) ) THEN
INFO = -22
ELSE IF( LDS.LT.1 .OR. ( WITHCO .AND. LDS.LT.N ) ) THEN
INFO = -24
ELSE IF( LDO.LT.1 .OR. ( ( WITHCO .OR. N4SID ) .AND.
$ LDO.LT.LNOBR ) ) THEN
INFO = -26
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IAW = 0
MINWRK = LDUNN + 4*N
MAXWRK = LDUNN + N + N*ILAENV( 1, 'DGEQRF', ' ', LDUN2, N, -1,
$ -1 )
IF( MOESP ) THEN
ID = 0
IF( WITHC ) THEN
MINWRK = MAX( MINWRK, 2*LDUNN + N2, LDUNN + NN + 7*N )
MAXWRK = MAX( MAXWRK, 2*LDUNN + N + N*ILAENV( 1,
$ 'DORMQR', 'LT', LDUN2, N, N, -1 ) )
END IF
ELSE
ID = N
END IF
C
IF( ( M.GT.0 .AND. WITHB ) .OR. N4SID ) THEN
MINWRK = MAX( MINWRK, 2*LDUNN + NN + ID + 7*N )
IF ( MOESP )
$ MINWRK = MAX( MINWRK, LDUNN + N + 6*MNOBR, LDUNN + N +
$ MAX( L + MNOBR, LNOBR +
$ MAX( 3*LNOBR + 1, M ) ) )
ELSE
IF( MOESP )
$ IAW = N + NN
END IF
C
IF( N4SID .OR. WITHCO ) THEN
MINWRK = MAX( MINWRK, LDUNN + IAW + N2 + MAX( 5*N, LMMNOL ),
$ ID + 4*MNOBRN+1, ID + MNOBRN + NPL )
MAXWRK = MAX( MAXWRK, LDUNN + IAW + N2 +
$ MAX( N*ILAENV( 1, 'DGEQRF', ' ', LNOBR, N, -1,
$ -1 ), LMMNOB*
$ ILAENV( 1, 'DORMQR', 'LT', LNOBR,
$ LMMNOB, N, -1 ), LMMNOL*
$ ILAENV( 1, 'DORMQR', 'LT', LDUN2,
$ LMMNOL, N, -1 ) ),
$ ID + N + N*ILAENV( 1, 'DGEQRF', ' ', LMNOBR,
$ N, -1, -1 ),
$ ID + N + NPL*ILAENV( 1, 'DORMQR', 'LT',
$ LMNOBR, NPL, N, -1 ) )
IF( N4SID .AND. ( M.GT.0 .AND. WITHB ) )
$ MINWRK = MAX( MINWRK, MNOBR*NPL*( M*NPL + 1 ) +
$ MAX( NPL**2, 4*M*NPL + 1 ) )
END IF
MAXWRK = MAX( MINWRK, MAXWRK )
C
IF ( LDWORK.LT.MINWRK ) THEN
INFO = -30
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01PD', -INFO )
RETURN
END IF
C
NR2 = MNOBR + 1
NR3 = LMNOBR + 1
NR4 = LMMNOB + 1
C
C Set the precision parameters. A threshold value EPS**(2/3) is
C used for deciding to use pivoting or not, where EPS is the
C relative machine precision (see LAPACK Library routine DLAMCH).
C
EPS = DLAMCH( 'Precision' )
THRESH = EPS**( TWO/THREE )
SVLMAX = ZERO
RCOND4 = ONE
C
C Let Un be the matrix of left singular vectors (stored in R_22).
C Copy un1 = GaL = Un(1:(s-1)*L,1:n) in the workspace.
C
IGAL = 1
CALL DLACPY( 'Full', LDUN2, N, R(NR2,NR2), LDR, DWORK(IGAL),
$ LDUN2 )
C
C Factor un1 = Q1*[r1' 0]' (' means transposition).
C Workspace: need L*(NOBR-1)*N+2*N,
C prefer L*(NOBR-1)*N+N+N*NB.
C
ITAU1 = IGAL + LDUNN
JWORK = ITAU1 + N
LDW = JWORK
CALL DGEQRF( LDUN2, N, DWORK(IGAL), LDUN2, DWORK(ITAU1),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Compute the reciprocal of the condition number of r1.
C Workspace: need L*(NOBR-1)*N+4*N.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', N, DWORK(IGAL), LDUN2,
$ RCOND1, DWORK(JWORK), IWORK, INFO )
C
TOLL1 = TOL
IF( TOLL1.LE.ZERO )
$ TOLL1 = NN*EPS
C
IF ( ( M.GT.0 .AND. WITHB ) .OR. N4SID ) THEN
JOBP = 'P'
IF ( WITHAL ) THEN
JOBPY = 'D'
ELSE
JOBPY = JOB
END IF
ELSE
JOBP = 'N'
END IF
C
IF ( MOESP ) THEN
NCOL = 0
IUN2 = JWORK
IF ( WITHC ) THEN
C
C Set C = Un(1:L,1:n) and then compute the system matrix A.
C
C Set un2 = Un(L+1:L*s,1:n) in DWORK(IUN2).
C Workspace: need 2*L*(NOBR-1)*N+N.
C
CALL DLACPY( 'Full', L, N, R(NR2,NR2), LDR, C, LDC )
CALL DLACPY( 'Full', LDUN2, N, R(NR2+L,NR2), LDR,
$ DWORK(IUN2), LDUN2 )
C
C Note that un1 has already been factored as
C un1 = Q1*[r1' 0]' and usually (generically, assuming
C observability) has full column rank.
C Update un2 <-- Q1'*un2 in DWORK(IUN2) and save its
C first n rows in A.
C Workspace: need 2*L*(NOBR-1)*N+2*N;
C prefer 2*L*(NOBR-1)*N+N+N*NB.
C
JWORK = IUN2 + LDUNN
CALL DORMQR( 'Left', 'Transpose', LDUN2, N, N, DWORK(IGAL),
$ LDUN2, DWORK(ITAU1), DWORK(IUN2), LDUN2,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
CALL DLACPY( 'Full', N, N, DWORK(IUN2), LDUN2, A, LDA )
NCOL = N
JWORK = IUN2
END IF
C
IF ( RCOND1.GT.MAX( TOLL1, THRESH ) ) THEN
C
C The triangular factor r1 is considered to be of full rank.
C Solve for A (if requested), r1*A = un2(1:n,:) in A.
C
IF ( WITHC ) THEN
CALL DTRTRS( 'Upper', 'NoTranspose', 'NonUnit', N, N,
$ DWORK(IGAL), LDUN2, A, LDA, IERR )
IF ( IERR.GT.0 ) THEN
INFO = 3
RETURN
END IF
END IF
RANK = N
ELSE
C
C Rank-deficient triangular factor r1. Use SVD of r1,
C r1 = U*S*V', also for computing A (if requested) from
C r1*A = un2(1:n,:). Matrix U is computed in DWORK(IU),
C and V' overwrites r1. If B is requested, the
C pseudoinverse of r1 and then of GaL are also computed
C in R(NR3,NR2).
C Workspace: need c*L*(NOBR-1)*N+N*N+7*N,
C where c = 1 if B and D are not needed,
C c = 2 if B and D are needed;
C prefer larger.
C
IU = IUN2
ISV = IU + NN
JWORK = ISV + N
IF ( M.GT.0 .AND. WITHB ) THEN
C
C Save the elementary reflectors used for computing r1,
C if B, D are needed.
C Workspace: need 2*L*(NOBR-1)*N+2*N+N*N.
C
IHOUS = JWORK
JWORK = IHOUS + LDUNN
CALL DLACPY( 'Lower', LDUN2, N, DWORK(IGAL), LDUN2,
$ DWORK(IHOUS), LDUN2 )
ELSE
IHOUS = IGAL
END IF
C
CALL MB02UD( 'Not factored', 'Left', 'NoTranspose', JOBP, N,
$ NCOL, ONE, TOLL1, RANK, DWORK(IGAL), LDUN2,
$ DWORK(IU), N, DWORK(ISV), A, LDA, R(NR3,NR2),
$ LDR, DWORK(JWORK), LDWORK-JWORK+1, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
IF ( RANK.EQ.0 ) THEN
JOBP = 'N'
ELSE IF ( M.GT.0 .AND. WITHB ) THEN
C
C Compute pinv(GaL) in R(NR3,NR2) if B, D are needed.
C Workspace: need 2*L*(NOBR-1)*N+N*N+3*N;
C prefer 2*L*(NOBR-1)*N+N*N+2*N+N*NB.
C
CALL DLASET( 'Full', N, LDUN2-N, ZERO, ZERO,
$ R(NR3,NR2+N), LDR )
CALL DORMQR( 'Right', 'Transpose', N, LDUN2, N,
$ DWORK(IHOUS), LDUN2, DWORK(ITAU1),
$ R(NR3,NR2), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( WITHCO ) THEN
C
C Save pinv(GaL) in DWORK(IGAL).
C
CALL DLACPY( 'Full', N, LDUN2, R(NR3,NR2), LDR,
$ DWORK(IGAL), N )
END IF
JWORK = IUN2
END IF
LDW = JWORK
END IF
C
IF ( M.GT.0 .AND. WITHB ) THEN
C
C Computation of B and D.
C
C Compute the reciprocal of the condition number of R_1c.
C Workspace: need L*(NOBR-1)*N+N+3*M*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', MNOBR, R(NR3,1),
$ LDR, RCOND2, DWORK(JWORK), IWORK, IERR )
C
TOLL = TOL
IF( TOLL.LE.ZERO )
$ TOLL = MNOBR*MNOBR*EPS
C
C Compute the right hand side and solve for K (in R_23),
C K*R_1c' = u2'*R_2c',
C where u2 = Un(:,n+1:L*s), and K is (Ls-n) x ms.
C
CALL DGEMM( 'Transpose', 'Transpose', LNOBRN, MNOBR, LNOBR,
$ ONE, R(NR2,NR2+N), LDR, R(1,NR2), LDR, ZERO,
$ R(NR2,NR3), LDR )
C
IF ( RCOND2.GT.MAX( TOLL, THRESH ) ) THEN
C
C The triangular factor R_1c is considered to be of full
C rank. Solve for K, K*R_1c' = u2'*R_2c'.
C
CALL DTRSM( 'Right', 'Upper', 'Transpose', 'Non-unit',
$ LNOBRN, MNOBR, ONE, R(NR3,1), LDR,
$ R(NR2,NR3), LDR )
ELSE
C
C Rank-deficient triangular factor R_1c. Use SVD of R_1c
C for computing K from K*R_1c' = u2'*R_2c', where
C R_1c = U1*S1*V1'. Matrix U1 is computed in R_33,
C and V1' overwrites R_1c.
C Workspace: need L*(NOBR-1)*N+N+6*M*NOBR;
C prefer larger.
C
ISV = LDW
JWORK = ISV + MNOBR
CALL MB02UD( 'Not factored', 'Right', 'Transpose',
$ 'No pinv', LNOBRN, MNOBR, ONE, TOLL, RANK11,
$ R(NR3,1), LDR, R(NR3,NR3), LDR, DWORK(ISV),
$ R(NR2,NR3), LDR, DWORK(JWORK), 1,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = LDW
END IF
C
C Compute the triangular factor of the structured matrix Q
C and apply the transformations to the matrix Kexpand, where
C Q and Kexpand are defined in SLICOT Library routine
C IB01PY. Compute also the matrices B, D.
C Workspace: need L*(NOBR-1)*N+N+max(L+M*NOBR,L*NOBR+
C max(3*L*NOBR+1,M));
C prefer larger.
C
IF ( WITHCO )
$ CALL DLACPY( 'Full', LNOBR, N, R(NR2,NR2), LDR, O, LDO )
CALL IB01PY( METH, JOBPY, NOBR, N, M, L, RANK, R(NR2,NR2),
$ LDR, DWORK(IGAL), LDUN2, DWORK(ITAU1),
$ R(NR3,NR2), LDR, R(NR2,NR3), LDR, R(NR4,NR2),
$ LDR, R(NR4,NR3), LDR, B, LDB, D, LDD, TOL,
$ IWORK, DWORK(JWORK), LDWORK-JWORK+1, IWARN,
$ INFO )
IF ( INFO.NE.0 )
$ RETURN
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
RCOND4 = DWORK(JWORK+1)
IF ( WITHCO )
$ CALL DLACPY( 'Full', LNOBR, N, O, LDO, R(NR2,1), LDR )
C
ELSE
RCOND2 = ONE
END IF
C
IF ( .NOT.WITHCO ) THEN
RCOND3 = ONE
GO TO 30
END IF
ELSE
C
C For N4SID, set RCOND2 to one.
C
RCOND2 = ONE
END IF
C
C If needed, save the first n columns, representing Gam, of the
C matrix of left singular vectors, Un, in R_21 and in O.
C
IF ( N4SID .OR. ( WITHC .AND. .NOT.WITHAL ) ) THEN
IF ( M.GT.0 )
$ CALL DLACPY( 'Full', LNOBR, N, R(NR2,NR2), LDR, R(NR2,1),
$ LDR )
CALL DLACPY( 'Full', LNOBR, N, R(NR2,NR2), LDR, O, LDO )
END IF
C
C Computations for covariance matrices, and system matrices (N4SID).
C Solve the least squares problems Gam*Y = R4(1:L*s,1:(2*m+L)*s),
C GaL*X = R4(L+1:L*s,:), where
C GaL = Gam(1:L*(s-1),:), Gam has full column rank, and
C R4 = [ R_14' R_24' R_34' R_44L' ], R_44L = R_44(1:L,:), as
C returned by SLICOT Library routine IB01ND.
C First, find the QR factorization of Gam, Gam = Q*R.
C Workspace: need L*(NOBR-1)*N+Aw+3*N;
C prefer L*(NOBR-1)*N+Aw+2*N+N*NB, where
C Aw = N+N*N, if (M = 0 or JOB = 'C'), rank(r1) < N,
C and METH = 'M';
C Aw = 0, otherwise.
C
ITAU2 = LDW
JWORK = ITAU2 + N
CALL DGEQRF( LNOBR, N, R(NR2,1), LDR, DWORK(ITAU2),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C For METH = 'M' or when JOB = 'B' or 'D', transpose
C [ R_14' R_24' R_34' ]' in the last block-row of R, obtaining Z,
C and for METH = 'N' and JOB = 'A' or 'C', use the matrix Z
C already available in the last block-row of R, and then apply
C the transformations, Z <-- Q'*Z.
C Workspace: need L*(NOBR-1)*N+Aw+2*N+(2*M+L)*NOBR;
C prefer L*(NOBR-1)*N+Aw+2*N+(2*M+L)*NOBR*NB.
C
IF ( MOESP .OR. ( WITHB .AND. .NOT. WITHAL ) )
$ CALL MA02AD( 'Full', LMMNOB, LNOBR, R(1,NR4), LDR, R(NR4,1),
$ LDR )
CALL DORMQR( 'Left', 'Transpose', LNOBR, LMMNOB, N, R(NR2,1), LDR,
$ DWORK(ITAU2), R(NR4,1), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
C
C Solve for Y, RY = Z in Z and save the transpose of the
C solution Y in the second block-column of R.
C
CALL DTRTRS( 'Upper', 'NoTranspose', 'NonUnit', N, LMMNOB,
$ R(NR2,1), LDR, R(NR4,1), LDR, IERR )
IF ( IERR.GT.0 ) THEN
INFO = 3
RETURN
END IF
CALL MA02AD( 'Full', N, LMMNOB, R(NR4,1), LDR, R(1,NR2), LDR )
NR4MN = NR4 - N
NR4PL = NR4 + L
NROW = LMMNOL
C
C SHIFT is .TRUE. if some columns of R_14 : R_44L should be
C shifted to the right, to avoid overwriting useful information.
C
SHIFT = M.EQ.0 .AND. LNOBR.LT.N2
C
IF ( RCOND1.GT.MAX( TOLL1, THRESH ) ) THEN
C
C The triangular factor r1 of GaL (GaL = Q1*r1) is
C considered to be of full rank.
C
C Transpose [ R_14' R_24' R_34' R_44L' ]'(:,L+1:L*s) in the
C last block-row of R (beginning with the (L+1)-th row),
C obtaining Z1, and then apply the transformations,
C Z1 <-- Q1'*Z1.
C Workspace: need L*(NOBR-1)*N+Aw+2*N+ (2*M+L)*NOBR + L;
C prefer L*(NOBR-1)*N+Aw+2*N+((2*M+L)*NOBR + L)*NB.
C
CALL MA02AD( 'Full', LMMNOL, LDUN2, R(1,NR4PL), LDR,
$ R(NR4PL,1), LDR )
CALL DORMQR( 'Left', 'Transpose', LDUN2, LMMNOL, N,
$ DWORK(IGAL), LDUN2, DWORK(ITAU1), R(NR4PL,1), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Solve for X, r1*X = Z1 in Z1, and copy the transpose of X
C into the last part of the third block-column of R.
C
CALL DTRTRS( 'Upper', 'NoTranspose', 'NonUnit', N, LMMNOL,
$ DWORK(IGAL), LDUN2, R(NR4PL,1), LDR, IERR )
IF ( IERR.GT.0 ) THEN
INFO = 3
RETURN
END IF
C
IF ( SHIFT ) THEN
NR4MN = NR4
C
DO 10 I = L - 1, 0, -1
CALL DCOPY( LMMNOL, R(1,NR4+I), 1, R(1,NR4+N+I), 1 )
10 CONTINUE
C
END IF
CALL MA02AD( 'Full', N, LMMNOL, R(NR4PL,1), LDR, R(1,NR4MN),
$ LDR )
NROW = 0
END IF
C
IF ( N4SID .OR. NROW.GT.0 ) THEN
C
C METH = 'N' or rank-deficient triangular factor r1.
C For METH = 'N', use SVD of r1, r1 = U*S*V', for computing
C X' from X'*GaL' = Z1', if rank(r1) < N. Matrix U is
C computed in DWORK(IU) and V' overwrites r1. Then, the
C pseudoinverse of GaL is determined in R(NR4+L,NR2).
C For METH = 'M', the pseudoinverse of GaL is already available
C if M > 0 and B is requested; otherwise, the SVD of r1 is
C available in DWORK(IU), DWORK(ISV), and DWORK(IGAL).
C Workspace for N4SID: need 2*L*(NOBR-1)*N+N*N+8*N;
C prefer larger.
C
IF ( MOESP ) THEN
FACT = 'F'
IF ( M.GT.0 .AND. WITHB )
$ CALL DLACPY( 'Full', N, LDUN2, DWORK(IGAL), N,
$ R(NR4PL,NR2), LDR )
ELSE
C
C Save the elementary reflectors used for computing r1.
C
IHOUS = JWORK
CALL DLACPY( 'Lower', LDUN2, N, DWORK(IGAL), LDUN2,
$ DWORK(IHOUS), LDUN2 )
FACT = 'N'
IU = IHOUS + LDUNN
ISV = IU + NN
JWORK = ISV + N
END IF
C
CALL MB02UD( FACT, 'Right', 'Transpose', JOBP, NROW, N, ONE,
$ TOLL1, RANK, DWORK(IGAL), LDUN2, DWORK(IU), N,
$ DWORK(ISV), R(1,NR4PL), LDR, R(NR4PL,NR2), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
IF ( NROW.GT.0 ) THEN
IF ( SHIFT ) THEN
NR4MN = NR4
CALL DLACPY( 'Full', LMMNOL, L, R(1,NR4), LDR,
$ R(1,NR4-L), LDR )
CALL DLACPY( 'Full', LMMNOL, N, R(1,NR4PL), LDR,
$ R(1,NR4MN), LDR )
CALL DLACPY( 'Full', LMMNOL, L, R(1,NR4-L), LDR,
$ R(1,NR4+N), LDR )
ELSE
CALL DLACPY( 'Full', LMMNOL, N, R(1,NR4PL), LDR,
$ R(1,NR4MN), LDR )
END IF
END IF
C
IF ( N4SID ) THEN
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Compute pinv(GaL) in R(NR4+L,NR2).
C Workspace: need 2*L*(NOBR-1)*N+3*N;
C prefer 2*L*(NOBR-1)*N+2*N+N*NB.
C
JWORK = IU
CALL DLASET( 'Full', N, LDUN2-N, ZERO, ZERO, R(NR4PL,NR2+N),
$ LDR )
CALL DORMQR( 'Right', 'Transpose', N, LDUN2, N,
$ DWORK(IHOUS), LDUN2, DWORK(ITAU1),
$ R(NR4PL,NR2), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
END IF
END IF
C
C For METH = 'N', find part of the solution (corresponding to A
C and C) and, optionally, for both METH = 'M', or METH = 'N',
C find the residual of the least squares problem that gives the
C covariances, M*V = N, where
C ( R_11 )
C M = ( Y' ), N = ( X' R4'(:,1:L) ), V = V(n+m*s, n+L),
C ( 0 0 )
C with M((2*m+L)*s+L, n+m*s), N((2*m+L)*s+L, n+L), R4' being
C stored in the last block-column of R. The last L rows of M
C are not explicitly considered. Note that, for efficiency, the
C last m*s columns of M are in the first positions of arrray R.
C This permutation does not affect the residual, only the
C solution. (The solution is not needed for METH = 'M'.)
C Note that R_11 corresponds to the future outputs for both
C METH = 'M', or METH = 'N' approaches. (For METH = 'N', the
C first two block-columns have been interchanged.)
C For METH = 'N', A and C are obtained as follows:
C [ A' C' ] = V(m*s+1:m*s+n,:).
C
C First, find the QR factorization of Y'(m*s+1:(2*m+L)*s,:)
C and apply the transformations to the corresponding part of N.
C Compress the workspace for N4SID by moving the scalar reflectors
C corresponding to Q.
C Workspace: need d*N+2*N;
C prefer d*N+N+N*NB;
C where d = 0, for MOESP, and d = 1, for N4SID.
C
IF ( MOESP ) THEN
ITAU = 1
ELSE
CALL DCOPY( N, DWORK(ITAU2), 1, DWORK, 1 )
ITAU = N + 1
END IF
C
JWORK = ITAU + N
CALL DGEQRF( LMNOBR, N, R(NR2,NR2), LDR, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Workspace: need d*N+N+(N+L);
C prefer d*N+N+(N+L)*NB.
C
CALL DORMQR( 'Left', 'Transpose', LMNOBR, NPL, N, R(NR2,NR2), LDR,
$ DWORK(ITAU), R(NR2,NR4MN), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
C
CALL DLASET( 'Lower', L-1, L-1, ZERO, ZERO, R(NR4+1,NR4), LDR )
C
C Now, matrix M with permuted block-columns has been
C triangularized.
C Compute the reciprocal of the condition number of its
C triangular factor in R(1:m*s+n,1:m*s+n).
C Workspace: need d*N+3*(M*NOBR+N).
C
JWORK = ITAU
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', MNOBRN, R, LDR, RCOND3,
$ DWORK(JWORK), IWORK, INFO )
C
TOLL = TOL
IF( TOLL.LE.ZERO )
$ TOLL = MNOBRN*MNOBRN*EPS
IF ( RCOND3.GT.MAX( TOLL, THRESH ) ) THEN
C
C The triangular factor is considered to be of full rank.
C Solve for V(m*s+1:m*s+n,:), giving [ A' C' ].
C
FULLR = .TRUE.
RANKM = MNOBRN
IF ( N4SID )
$ CALL DTRSM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N,
$ NPL, ONE, R(NR2,NR2), LDR, R(NR2,NR4MN), LDR )
ELSE
FULLR = .FALSE.
C
C Use QR factorization (with pivoting). For METH = 'N', save
C (and then restore) information about the QR factorization of
C Gam, for later use. Note that R_11 could be modified by
C MB03OD, but the corresponding part of N is also modified
C accordingly.
C Workspace: need d*N+4*(M*NOBR+N)+1;
C prefer d*N+3*(M*NOBR+N)+(M*NOBR+N+1)*NB.
C
DO 20 I = 1, MNOBRN
IWORK(I) = 0
20 CONTINUE
C
IF ( N4SID .AND. ( M.GT.0 .AND. WITHB ) )
$ CALL DLACPY( 'Full', LNOBR, N, R(NR2,1), LDR, R(NR4,1),
$ LDR )
JWORK = ITAU + MNOBRN
CALL DLASET( 'Lower', MNOBRN-1, MNOBRN, ZERO, ZERO, R(2,1),
$ LDR )
CALL MB03OD( 'QR', MNOBRN, MNOBRN, R, LDR, IWORK, TOLL,
$ SVLMAX, DWORK(ITAU), RANKM, SVAL, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need d*N+M*NOBR+N+N+L;
C prefer d*N+M*NOBR+N+(N+L)*NB.
C
CALL DORMQR( 'Left', 'Transpose', MNOBRN, NPL, MNOBRN,
$ R, LDR, DWORK(ITAU), R(1,NR4MN), LDR,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
END IF
C
IF ( WITHCO ) THEN
C
C The residual (transposed) of the least squares solution
C (multiplied by a matrix with orthogonal columns) is stored
C in the rows RANKM+1:(2*m+L)*s+L of V, and it should be
C squared-up for getting the covariance matrices. (Generically,
C RANKM = m*s+n.)
C
RNRM = ONE/DBLE( NSMPL )
IF ( MOESP ) THEN
CALL DSYRK( 'Upper', 'Transpose', NPL, LMMNOL-RANKM, RNRM,
$ R(RANKM+1,NR4MN), LDR, ZERO, R, LDR )
CALL DLACPY( 'Upper', N, N, R, LDR, Q, LDQ )
CALL DLACPY( 'Full', N, L, R(1,N+1), LDR, S, LDS )
CALL DLACPY( 'Upper', L, L, R(N+1,N+1), LDR, RY, LDRY )
ELSE
CALL DSYRK( 'Upper', 'Transpose', NPL, LMMNOL-RANKM, RNRM,
$ R(RANKM+1,NR4MN), LDR, ZERO, DWORK(JWORK), NPL )
CALL DLACPY( 'Upper', N, N, DWORK(JWORK), NPL, Q, LDQ )
CALL DLACPY( 'Full', N, L, DWORK(JWORK+N*NPL), NPL, S,
$ LDS )
CALL DLACPY( 'Upper', L, L, DWORK(JWORK+N*(NPL+1)), NPL, RY,
$ LDRY )
END IF
CALL MA02ED( 'Upper', N, Q, LDQ )
CALL MA02ED( 'Upper', L, RY, LDRY )
C
C Check the magnitude of the residual.
C
RNRM = DLANGE( '1-norm', LMMNOL-RANKM, NPL, R(RANKM+1,NR4MN),
$ LDR, DWORK(JWORK) )
IF ( RNRM.LT.THRESH )
$ IWARN = 5
END IF
C
IF ( N4SID ) THEN
IF ( .NOT.FULLR ) THEN
IWARN = 4
C
C Compute part of the solution of the least squares problem,
C M*V = N, for the rank-deficient problem.
C Remark: this computation should not be performed before the
C symmetric updating operation above.
C Workspace: need M*NOBR+3*N+L;
C prefer larger.
C
CALL MB03OD( 'No QR', N, N, R(NR2,NR2), LDR, IWORK, TOLL1,
$ SVLMAX, DWORK(ITAU), RANKM, SVAL, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
CALL MB02QY( N, N, NPL, RANKM, R(NR2,NR2), LDR, IWORK,
$ R(NR2,NR4MN), LDR, DWORK(ITAU+MNOBR),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU
IF ( M.GT.0 .AND. WITHB )
$ CALL DLACPY( 'Full', LNOBR, N, R(NR4,1), LDR, R(NR2,1),
$ LDR )
END IF
C
IF ( WITHC ) THEN
C
C Obtain A and C, noting that block-permutations have been
C implicitly used.
C
CALL MA02AD( 'Full', N, N, R(NR2,NR4MN), LDR, A, LDA )
CALL MA02AD( 'Full', N, L, R(NR2,NR4MN+N), LDR, C, LDC )
ELSE
C
C Use the given A and C.
C
CALL MA02AD( 'Full', N, N, A, LDA, R(NR2,NR4MN), LDR )
CALL MA02AD( 'Full', L, N, C, LDC, R(NR2,NR4MN+N), LDR )
END IF
C
IF ( M.GT.0 .AND. WITHB ) THEN
C
C Obtain B and D.
C First, compute the transpose of the matrix K as
C N(1:m*s,:) - M(1:m*s,m*s+1:m*s+n)*[A' C'], in the first
C m*s rows of R(1,NR4MN).
C
CALL DGEMM ( 'NoTranspose', 'NoTranspose', MNOBR, NPL, N,
$ -ONE, R(1,NR2), LDR, R(NR2,NR4MN), LDR, ONE,
$ R(1,NR4MN), LDR )
C
C Denote M = pinv(GaL) and construct
C
C [ [ A ] -1 ] [ R ]
C and L = [ [ ] R 0 ] Q', where Gam = Q * [ ].
C [ [ C ] ] [ 0 ]
C
C Then, solve the least squares problem.
C
CALL DLACPY( 'Full', N, N, A, LDA, R(NR2,NR4), LDR )
CALL DLACPY( 'Full', L, N, C, LDC, R(NR2+N,NR4), LDR )
CALL DTRSM( 'Right', 'Upper', 'NoTranspose', 'NonUnit',
$ NPL, N, ONE, R(NR2,1), LDR, R(NR2,NR4), LDR )
CALL DLASET( 'Full', NPL, LNOBRN, ZERO, ZERO, R(NR2,NR4+N),
$ LDR )
C
C Workspace: need 2*N+L; prefer N + (N+L)*NB.
C
CALL DORMQR( 'Right', 'Transpose', NPL, LNOBR, N, R(NR2,1),
$ LDR, DWORK, R(NR2,NR4), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
C
C Obtain the matrix K by transposition, and find B and D.
C Workspace: need NOBR*(M*(N+L))**2+M*NOBR*(N+L)+
C max((N+L)**2,4*M*(N+L)+1);
C prefer larger.
C
CALL MA02AD( 'Full', MNOBR, NPL, R(1,NR4MN), LDR,
$ R(NR2,NR3), LDR )
IX = MNOBR*NPL**2*M + 1
JWORK = IX + MNOBR*NPL
CALL IB01PX( JOBPY, NOBR, N, M, L, R, LDR, O, LDO,
$ R(NR2,NR4), LDR, R(NR4PL,NR2), LDR, R(NR2,NR3),
$ LDR, DWORK, MNOBR*NPL, DWORK(IX), B, LDB, D,
$ LDD, TOL, IWORK, DWORK(JWORK), LDWORK-JWORK+1,
$ IWARNL, INFO )
IF ( INFO.NE.0 )
$ RETURN
IWARN = MAX( IWARN, IWARNL )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
RCOND4 = DWORK(JWORK+1)
C
END IF
END IF
C
30 CONTINUE
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C numbers in the next locations.
C
DWORK(1) = MAXWRK
DWORK(2) = RCOND1
DWORK(3) = RCOND2
DWORK(4) = RCOND3
DWORK(5) = RCOND4
RETURN
C
C *** Last line of IB01PD ***
END
|