1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
SUBROUTINE IB01PX( JOB, NOBR, N, M, L, UF, LDUF, UN, LDUN, UL,
$ LDUL, PGAL, LDPGAL, K, LDK, R, LDR, X, B, LDB,
$ D, LDD, TOL, IWORK, DWORK, LDWORK, IWARN,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To build and solve the least squares problem T*X = Kv, and
C estimate the matrices B and D of a linear time-invariant (LTI)
C state space model, using the solution X, and the singular
C value decomposition information and other intermediate results,
C provided by other routines.
C
C The matrix T is computed as a sum of Kronecker products,
C
C T = T + kron(Uf(:,(i-1)*m+1:i*m),N_i), for i = 1 : s,
C
C (with T initialized by zero), where Uf is the triangular
C factor of the QR factorization of the future input part (see
C SLICOT Library routine IB01ND), N_i is given by the i-th block
C row of the matrix
C
C [ Q_11 Q_12 ... Q_1,s-2 Q_1,s-1 Q_1s ] [ I_L 0 ]
C [ Q_12 Q_13 ... Q_1,s-1 Q_1s 0 ] [ ]
C N = [ Q_13 Q_14 ... Q_1s 0 0 ] * [ ],
C [ : : : : : ] [ ]
C [ Q_1s 0 ... 0 0 0 ] [ 0 GaL ]
C
C and where
C
C [ -L_1|1 ] [ M_i-1 - L_1|i ]
C Q_11 = [ ], Q_1i = [ ], i = 2:s,
C [ I_L - L_2|1 ] [ -L_2|i ]
C
C are (n+L)-by-L matrices, and GaL is built from the first n
C relevant singular vectors, GaL = Un(1:L(s-1),1:n), computed
C by IB01ND.
C
C The vector Kv is vec(K), with the matrix K defined by
C
C K = [ K_1 K_2 K_3 ... K_s ],
C
C where K_i = K(:,(i-1)*m+1:i*m), i = 1:s, is (n+L)-by-m.
C The given matrices are Uf, GaL, and
C
C [ L_1|1 ... L_1|s ]
C L = [ ], (n+L)-by-L*s,
C [ L_2|1 ... L_2|s ]
C
C M = [ M_1 ... M_s-1 ], n-by-L*(s-1), and
C K, (n+L)-by-m*s.
C
C Matrix M is the pseudoinverse of the matrix GaL, computed by
C SLICOT Library routine IB01PD.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies which of the matrices B and D should be
C computed, as follows:
C = 'B': compute the matrix B, but not the matrix D;
C = 'D': compute both matrices B and D.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C Hankel matrices processed by other routines. NOBR > 1.
C
C N (input) INTEGER
C The order of the system. NOBR > N > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C UF (input/output) DOUBLE PRECISION array, dimension
C ( LDUF,M*NOBR )
C On entry, the leading M*NOBR-by-M*NOBR upper triangular
C part of this array must contain the upper triangular
C factor of the QR factorization of the future input part,
C as computed by SLICOT Library routine IB01ND.
C The strict lower triangle need not be set to zero.
C On exit, the leading M*NOBR-by-M*NOBR upper triangular
C part of this array is unchanged, and the strict lower
C triangle is set to zero.
C
C LDUF INTEGER
C The leading dimension of the array UF.
C LDUF >= MAX( 1, M*NOBR ).
C
C UN (input) DOUBLE PRECISION array, dimension ( LDUN,N )
C The leading L*(NOBR-1)-by-N part of this array must
C contain the matrix GaL, i.e., the leading part of the
C first N columns of the matrix Un of relevant singular
C vectors.
C
C LDUN INTEGER
C The leading dimension of the array UN.
C LDUN >= L*(NOBR-1).
C
C UL (input/output) DOUBLE PRECISION array, dimension
C ( LDUL,L*NOBR )
C On entry, the leading (N+L)-by-L*NOBR part of this array
C must contain the given matrix L.
C On exit, if M > 0, the leading (N+L)-by-L*NOBR part of
C this array is overwritten by the matrix
C [ Q_11 Q_12 ... Q_1,s-2 Q_1,s-1 Q_1s ].
C
C LDUL INTEGER
C The leading dimension of the array UL. LDUL >= N+L.
C
C PGAL (input) DOUBLE PRECISION array, dimension
C ( LDPGAL,L*(NOBR-1) )
C The leading N-by-L*(NOBR-1) part of this array must
C contain the pseudoinverse of the matrix GaL, computed by
C SLICOT Library routine IB01PD.
C
C LDPGAL INTEGER
C The leading dimension of the array PGAL. LDPGAL >= N.
C
C K (input) DOUBLE PRECISION array, dimension ( LDK,M*NOBR )
C The leading (N+L)-by-M*NOBR part of this array must
C contain the given matrix K.
C
C LDK INTEGER
C The leading dimension of the array K. LDK >= N+L.
C
C R (output) DOUBLE PRECISION array, dimension ( LDR,M*(N+L) )
C The leading (N+L)*M*NOBR-by-M*(N+L) part of this array
C contains details of the complete orthogonal factorization
C of the coefficient matrix T of the least squares problem
C which is solved for getting the system matrices B and D.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 1, (N+L)*M*NOBR ).
C
C X (output) DOUBLE PRECISION array, dimension
C ( (N+L)*M*NOBR )
C The leading M*(N+L) elements of this array contain the
C least squares solution of the system T*X = Kv.
C The remaining elements are used as workspace (to store the
C corresponding part of the vector Kv = vec(K)).
C
C B (output) DOUBLE PRECISION array, dimension ( LDB,M )
C The leading N-by-M part of this array contains the system
C input matrix.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= N.
C
C D (output) DOUBLE PRECISION array, dimension ( LDD,M )
C If JOB = 'D', the leading L-by-M part of this array
C contains the system input-output matrix.
C If JOB = 'B', this array is not referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if JOB = 'D';
C LDD >= 1, if JOB = 'B'.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension ( M*(N+L) )
C
C DWORK DOUBLE PRECISION array, dimension ( LDWORK )
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, if M > 0, DWORK(2) contains the
C reciprocal condition number of the triangular factor of
C the matrix T.
C On exit, if INFO = -26, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( (N+L)*(N+L), 4*M*(N+L)+1 ).
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problem to be solved has a
C rank-deficient coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix T is computed, evaluating the sum of Kronecker
C products, and then the linear system T*X = Kv is solved in a
C least squares sense. The matrices B and D are then directly
C obtained from the least squares solution.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Van Overschee, P., and De Moor, B.
C N4SID: Two Subspace Algorithms for the Identification
C of Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [3] Van Overschee, P.
C Subspace Identification : Theory - Implementation -
C Applications.
C Ph. D. Thesis, Department of Electrical Engineering,
C Katholieke Universiteit Leuven, Belgium, Feb. 1995.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Universiteit Leuven, Feb. 2000.
C
C REVISIONS
C
C V. Sima, Katholieke Universiteit Leuven, Sep. 2001.
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDB, LDD, LDK, LDPGAL, LDR,
$ LDUF, LDUL, LDUN, LDWORK, M, N, NOBR
CHARACTER JOB
C .. Array Arguments ..
DOUBLE PRECISION B(LDB, *), D(LDD, *), DWORK(*), K(LDK, *),
$ PGAL(LDPGAL, *), R(LDR, *), UF(LDUF, *),
$ UL(LDUL, *), UN(LDUN, *), X(*)
INTEGER IWORK( * )
C .. Local Scalars ..
DOUBLE PRECISION RCOND, TOLL
INTEGER I, IERR, J, JWORK, LDUN2, LNOBR, LP1, MAXWRK,
$ MINWRK, MKRON, MNOBR, NKRON, NP1, NPL, RANK
LOGICAL WITHB, WITHD
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DGELSY, DGEMM, DLACPY, DLASET, DTRCON, MB01VD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
WITHD = LSAME( JOB, 'D' )
WITHB = LSAME( JOB, 'B' ) .OR. WITHD
MNOBR = M*NOBR
LNOBR = L*NOBR
LDUN2 = LNOBR - L
LP1 = L + 1
NP1 = N + 1
NPL = N + L
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.WITHB ) THEN
INFO = -1
ELSE IF( NOBR.LE.1 ) THEN
INFO = -2
ELSE IF( N.GE.NOBR .OR. N.LE.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( L.LE.0 ) THEN
INFO = -5
ELSE IF( LDUF.LT.MAX( 1, MNOBR ) ) THEN
INFO = -7
ELSE IF( LDUN.LT.LDUN2 ) THEN
INFO = -9
ELSE IF( LDUL.LT.NPL ) THEN
INFO = -11
ELSE IF( LDPGAL.LT.N ) THEN
INFO = -13
ELSE IF( LDK.LT.NPL ) THEN
INFO = -15
ELSE IF( LDR.LT.MAX( 1, MNOBR*NPL ) ) THEN
INFO = -17
ELSE IF( LDB.LT.N ) THEN
INFO = -20
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L ) ) THEN
INFO = -22
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MINWRK = MAX( NPL*NPL, 4*M*NPL + 1 )
C
IF ( LDWORK.LT.MINWRK ) THEN
INFO = -26
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01PX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( M.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Construct the matrix [ Q_11 Q_12 ... Q_1,s-1 Q_1s ] in UL.
C
DO 20 J = 1, L
C
DO 10 I = 1, NPL
UL(I,J) = -UL(I,J)
10 CONTINUE
C
UL(N+J,J) = ONE + UL(N+J,J)
20 CONTINUE
C
DO 50 J = LP1, LNOBR
C
DO 30 I = 1, N
UL(I,J) = PGAL(I,J-L) - UL(I,J)
30 CONTINUE
C
DO 40 I = NP1, NPL
UL(I,J) = -UL(I,J)
40 CONTINUE
C
50 CONTINUE
C
C Compute the coefficient matrix T using Kronecker products.
C Workspace: (N+L)*(N+L).
C In the same loop, vectorize K in X.
C
CALL DLASET( 'Full', MNOBR*NPL, M*NPL, ZERO, ZERO, R, LDR )
CALL DLASET( 'Lower', MNOBR-1, MNOBR-1, ZERO, ZERO, UF(2,1),
$ LDUF )
JWORK = NPL*L + 1
C
DO 60 I = 1, NOBR
CALL DLACPY( 'Full', NPL, L, UL(1,(I-1)*L+1), LDUL, DWORK,
$ NPL )
IF ( I.LT.NOBR ) THEN
CALL DGEMM ( 'NoTranspose', 'NoTranspose', NPL, N,
$ L*(NOBR-I), ONE, UL(1,I*L+1), LDUL, UN, LDUN,
$ ZERO, DWORK(JWORK), NPL )
ELSE
CALL DLASET( 'Full', NPL, N, ZERO, ZERO, DWORK(JWORK), NPL )
END IF
CALL MB01VD( 'NoTranspose', 'NoTranspose', MNOBR, M, NPL,
$ NPL, ONE, ONE, UF(1,(I-1)*M+1), LDUF, DWORK,
$ NPL, R, LDR, MKRON, NKRON, IERR )
CALL DLACPY( 'Full', NPL, M, K(1,(I-1)*M+1), LDK,
$ X((I-1)*NKRON+1), NPL )
60 CONTINUE
C
C Compute the tolerance.
C
TOLL = TOL
IF( TOLL.LE.ZERO )
$ TOLL = MKRON*NKRON*DLAMCH( 'Precision' )
C
C Solve the least square problem T*X = vec(K).
C Workspace: need 4*M*(N+L)+1;
C prefer 3*M*(N+L)+(M*(N+L)+1)*NB.
C
DO 70 I = 1, NKRON
IWORK(I) = 0
70 CONTINUE
C
CALL DGELSY( MKRON, NKRON, 1, R, LDR, X, MKRON, IWORK, TOLL, RANK,
$ DWORK, LDWORK, IERR )
MAXWRK = DWORK(1)
C
C Compute the reciprocal of the condition number of the triangular
C factor R of T.
C Workspace: need 3*M*(N+L).
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', NKRON, R, LDR, RCOND,
$ DWORK, IWORK, IERR )
C
IF ( RANK.LT.NKRON ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 4
END IF
C
C Construct the matrix D, if needed.
C
IF ( WITHD )
$ CALL DLACPY( 'Full', L, M, X, NPL, D, LDD )
C
C Construct the matrix B.
C
CALL DLACPY( 'Full', N, M, X(LP1), NPL, B, LDB )
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C number in DWORK(2).
C
DWORK(1) = MAX( MINWRK, MAXWRK )
DWORK(2) = RCOND
C
RETURN
C
C *** Last line of IB01PX ***
END
|