1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
SUBROUTINE IB01PY( METH, JOB, NOBR, N, M, L, RANKR1, UL, LDUL,
$ R1, LDR1, TAU1, PGAL, LDPGAL, K, LDK, R, LDR,
$ H, LDH, B, LDB, D, LDD, TOL, IWORK, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C 1. To compute the triangular (QR) factor of the p-by-L*s
C structured matrix Q,
C
C [ Q_1s Q_1,s-1 Q_1,s-2 ... Q_12 Q_11 ]
C [ 0 Q_1s Q_1,s-1 ... Q_13 Q_12 ]
C Q = [ 0 0 Q_1s ... Q_14 Q_13 ],
C [ : : : : : ]
C [ 0 0 0 ... 0 Q_1s ]
C
C and apply the transformations to the p-by-m matrix Kexpand,
C
C [ K_1 ]
C [ K_2 ]
C Kexpand = [ K_3 ],
C [ : ]
C [ K_s ]
C
C where, for MOESP approach (METH = 'M'), p = s*(L*s-n), and
C Q_1i = u2(L*(i-1)+1:L*i,:)' is (Ls-n)-by-L, for i = 1:s,
C u2 = Un(1:L*s,n+1:L*s), K_i = K(:,(i-1)*m+1:i*m) (i = 1:s)
C is (Ls-n)-by-m, and for N4SID approach (METH = 'N'), p = s*(n+L),
C and
C
C [ -L_1|1 ] [ M_i-1 - L_1|i ]
C Q_11 = [ ], Q_1i = [ ], i = 2:s,
C [ I_L - L_2|1 ] [ -L_2|i ]
C
C are (n+L)-by-L matrices, and
C K_i = K(:,(i-1)*m+1:i*m), i = 1:s, is (n+L)-by-m.
C The given matrices are:
C For METH = 'M', u2 = Un(1:L*s,n+1:L*s),
C K(1:Ls-n,1:m*s);
C
C [ L_1|1 ... L_1|s ]
C For METH = 'N', L = [ ], (n+L)-by-L*s,
C [ L_2|1 ... L_2|s ]
C
C M = [ M_1 ... M_s-1 ], n-by-L*(s-1), and
C K, (n+L)-by-m*s.
C Matrix M is the pseudoinverse of the matrix GaL,
C built from the first n relevant singular
C vectors, GaL = Un(1:L(s-1),1:n), and computed
C by SLICOT Library routine IB01PD for METH = 'N'.
C
C Matrix Q is triangularized (in R), exploiting its structure,
C and the transformations are applied from the left to Kexpand.
C
C 2. To estimate the matrices B and D of a linear time-invariant
C (LTI) state space model, using the factor R, transformed matrix
C Kexpand, and the singular value decomposition information provided
C by other routines.
C
C IB01PY routine is intended for speed and efficient use of the
C memory space. It is generally not recommended for METH = 'N', as
C IB01PX routine can produce more accurate results.
C
C ARGUMENTS
C
C Mode Parameters
C
C METH CHARACTER*1
C Specifies the subspace identification method to be used,
C as follows:
C = 'M': MOESP algorithm with past inputs and outputs;
C = 'N': N4SID algorithm.
C
C JOB CHARACTER*1
C Specifies whether or not the matrices B and D should be
C computed, as follows:
C = 'B': compute the matrix B, but not the matrix D;
C = 'D': compute both matrices B and D;
C = 'N': do not compute the matrices B and D, but only the
C R factor of Q and the transformed Kexpand.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C The number of block rows, s, in the input and output
C Hankel matrices processed by other routines. NOBR > 1.
C
C N (input) INTEGER
C The order of the system. NOBR > N > 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C RANKR1 (input) INTEGER
C The effective rank of the upper triangular matrix r1,
C i.e., the triangular QR factor of the matrix GaL,
C computed by SLICOT Library routine IB01PD. It is also
C the effective rank of the matrix GaL. 0 <= RANKR1 <= N.
C If JOB = 'N', or M = 0, or METH = 'N', this
C parameter is not used.
C
C UL (input/workspace) DOUBLE PRECISION array, dimension
C ( LDUL,L*NOBR )
C On entry, if METH = 'M', the leading L*NOBR-by-L*NOBR
C part of this array must contain the matrix Un of
C relevant singular vectors. The first N columns of UN
C need not be specified for this routine.
C On entry, if METH = 'N', the leading (N+L)-by-L*NOBR
C part of this array must contain the given matrix L.
C On exit, the leading LDF-by-L*(NOBR-1) part of this array
C is overwritten by the matrix F of the algorithm in [4],
C where LDF = MAX( 1, L*NOBR-N-L ), if METH = 'M';
C LDF = N, if METH = 'N'.
C
C LDUL INTEGER
C The leading dimension of the array UL.
C LDUL >= L*NOBR, if METH = 'M';
C LDUL >= N+L, if METH = 'N'.
C
C R1 (input) DOUBLE PRECISION array, dimension ( LDR1,N )
C If JOB <> 'N', M > 0, METH = 'M', and RANKR1 = N,
C the leading L*(NOBR-1)-by-N part of this array must
C contain details of the QR factorization of the matrix
C GaL, as computed by SLICOT Library routine IB01PD.
C Specifically, the leading N-by-N upper triangular part
C must contain the upper triangular factor r1 of GaL,
C and the lower L*(NOBR-1)-by-N trapezoidal part, together
C with array TAU1, must contain the factored form of the
C orthogonal matrix Q1 in the QR factorization of GaL.
C If JOB = 'N', or M = 0, or METH = 'N', or METH = 'M'
C and RANKR1 < N, this array is not referenced.
C
C LDR1 INTEGER
C The leading dimension of the array R1.
C LDR1 >= L*(NOBR-1), if JOB <> 'N', M > 0, METH = 'M',
C and RANKR1 = N;
C LDR1 >= 1, otherwise.
C
C TAU1 (input) DOUBLE PRECISION array, dimension ( N )
C If JOB <> 'N', M > 0, METH = 'M', and RANKR1 = N,
C this array must contain the scalar factors of the
C elementary reflectors used in the QR factorization of the
C matrix GaL, computed by SLICOT Library routine IB01PD.
C If JOB = 'N', or M = 0, or METH = 'N', or METH = 'M'
C and RANKR1 < N, this array is not referenced.
C
C PGAL (input) DOUBLE PRECISION array, dimension
C ( LDPGAL,L*(NOBR-1) )
C If METH = 'N', or JOB <> 'N', M > 0, METH = 'M' and
C RANKR1 < N, the leading N-by-L*(NOBR-1) part of this
C array must contain the pseudoinverse of the matrix GaL,
C as computed by SLICOT Library routine IB01PD.
C If METH = 'M' and JOB = 'N', or M = 0, or
C RANKR1 = N, this array is not referenced.
C
C LDPGAL INTEGER
C The leading dimension of the array PGAL.
C LDPGAL >= N, if METH = 'N', or JOB <> 'N', M > 0,
C and METH = 'M' and RANKR1 < N;
C LDPGAL >= 1, otherwise.
C
C K (input/output) DOUBLE PRECISION array, dimension
C ( LDK,M*NOBR )
C On entry, the leading (p/s)-by-M*NOBR part of this array
C must contain the given matrix K defined above.
C On exit, the leading (p/s)-by-M*NOBR part of this array
C contains the transformed matrix K.
C
C LDK INTEGER
C The leading dimension of the array K. LDK >= p/s.
C
C R (output) DOUBLE PRECISION array, dimension ( LDR,L*NOBR )
C If JOB = 'N', or M = 0, or Q has full rank, the
C leading L*NOBR-by-L*NOBR upper triangular part of this
C array contains the R factor of the QR factorization of
C the matrix Q.
C If JOB <> 'N', M > 0, and Q has not a full rank, the
C leading L*NOBR-by-L*NOBR upper trapezoidal part of this
C array contains details of the complete orhogonal
C factorization of the matrix Q, as constructed by SLICOT
C Library routines MB03OD and MB02QY.
C
C LDR INTEGER
C The leading dimension of the array R. LDR >= L*NOBR.
C
C H (output) DOUBLE PRECISION array, dimension ( LDH,M )
C If JOB = 'N' or M = 0, the leading L*NOBR-by-M part
C of this array contains the updated part of the matrix
C Kexpand corresponding to the upper triangular factor R
C in the QR factorization of the matrix Q.
C If JOB <> 'N', M > 0, and METH = 'N' or METH = 'M'
C and RANKR1 < N, the leading L*NOBR-by-M part of this
C array contains the minimum norm least squares solution of
C the linear system Q*X = Kexpand, from which the matrices
C B and D are found. The first NOBR-1 row blocks of X
C appear in the reverse order in H.
C If JOB <> 'N', M > 0, METH = 'M' and RANKR1 = N, the
C leading L*(NOBR-1)-by-M part of this array contains the
C matrix product Q1'*X, and the subarray
C L*(NOBR-1)+1:L*NOBR-by-M contains the corresponding
C submatrix of X, with X defined in the phrase above.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= L*NOBR.
C
C B (output) DOUBLE PRECISION array, dimension ( LDB,M )
C If M > 0, JOB = 'B' or 'D' and INFO = 0, the leading
C N-by-M part of this array contains the system input
C matrix.
C If M = 0 or JOB = 'N', this array is not referenced.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= N, if M > 0 and JOB = 'B' or 'D';
C LDB >= 1, if M = 0 or JOB = 'N'.
C
C D (output) DOUBLE PRECISION array, dimension ( LDD,M )
C If M > 0, JOB = 'D' and INFO = 0, the leading
C L-by-M part of this array contains the system input-output
C matrix.
C If M = 0 or JOB = 'B' or 'N', this array is not
C referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if M > 0 and JOB = 'D';
C LDD >= 1, if M = 0 or JOB = 'B' or 'N'.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; an m-by-n matrix whose estimated
C condition number is less than 1/TOL is considered to
C be of full rank. If the user sets TOL <= 0, then an
C implicitly computed, default tolerance, defined by
C TOLDEF = m*n*EPS, is used instead, where EPS is the
C relative machine precision (see LAPACK Library routine
C DLAMCH).
C This parameter is not used if M = 0 or JOB = 'N'.
C
C Workspace
C
C IWORK INTEGER array, dimension ( LIWORK )
C where LIWORK >= 0, if JOB = 'N', or M = 0;
C LIWORK >= L*NOBR, if JOB <> 'N', and M > 0.
C
C DWORK DOUBLE PRECISION array, dimension ( LDWORK )
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and, if JOB <> 'N', and M > 0, DWORK(2)
C contains the reciprocal condition number of the triangular
C factor of the matrix R.
C On exit, if INFO = -28, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 2*L, L*NOBR, L+M*NOBR ),
C if JOB = 'N', or M = 0;
C LDWORK >= MAX( L+M*NOBR, L*NOBR + MAX( 3*L*NOBR+1, M ) ),
C if JOB <> 'N', and M > 0.
C For good performance, LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problem to be solved has a
C rank-deficient coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 3: a singular upper triangular matrix was found.
C
C METHOD
C
C The QR factorization is computed exploiting the structure,
C as described in [4].
C The matrices B and D are then obtained by solving certain
C linear systems in a least squares sense.
C
C REFERENCES
C
C [1] Verhaegen M., and Dewilde, P.
C Subspace Model Identification. Part 1: The output-error
C state-space model identification class of algorithms.
C Int. J. Control, 56, pp. 1187-1210, 1992.
C
C [2] Van Overschee, P., and De Moor, B.
C N4SID: Two Subspace Algorithms for the Identification
C of Combined Deterministic-Stochastic Systems.
C Automatica, Vol.30, No.1, pp. 75-93, 1994.
C
C [3] Van Overschee, P.
C Subspace Identification : Theory - Implementation -
C Applications.
C Ph. D. Thesis, Department of Electrical Engineering,
C Katholieke Universiteit Leuven, Belgium, Feb. 1995.
C
C [4] Sima, V.
C Subspace-based Algorithms for Multivariable System
C Identification.
C Studies in Informatics and Control, 5, pp. 335-344, 1996.
C
C NUMERICAL ASPECTS
C
C The implemented method for computing the triangular factor and
C updating Kexpand is numerically stable.
C
C FURTHER COMMENTS
C
C The computed matrices B and D are not the least squares solutions
C delivered by either MOESP or N4SID algorithms, except for the
C special case n = s - 1, L = 1. However, the computed B and D are
C frequently good enough estimates, especially for METH = 'M'.
C Better estimates could be obtained by calling SLICOT Library
C routine IB01PX, but it is less efficient, and requires much more
C workspace.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 1999.
C
C REVISIONS
C
C Feb. 2000, Sep. 2001, March 2005.
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDB, LDD, LDH, LDK, LDPGAL,
$ LDR, LDR1, LDUL, LDWORK, M, N, NOBR, RANKR1
CHARACTER JOB, METH
C .. Array Arguments ..
DOUBLE PRECISION B(LDB, *), D(LDD, *), DWORK(*), H(LDH, *),
$ K(LDK, *), PGAL(LDPGAL, *), R(LDR, *),
$ R1(LDR1, *), TAU1(*), UL(LDUL, *)
INTEGER IWORK( * )
C .. Local Scalars ..
DOUBLE PRECISION EPS, RCOND, SVLMAX, THRESH, TOLL
INTEGER I, IERR, ITAU, J, JI, JL, JM, JWORK, LDUN2,
$ LNOBR, LP1, MAXWRK, MINWRK, MNOBR, NOBRH,
$ NROW, NROWML, RANK
LOGICAL MOESP, N4SID, WITHB, WITHD
C .. Local Array ..
DOUBLE PRECISION SVAL(3)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DGEQRF, DLACPY, DLASET, DORMQR, DSWAP,
$ DTRCON, DTRSM, DTRTRS, MA02AD, MB02QY, MB03OD,
$ MB04OD, MB04OY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MOD
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MOESP = LSAME( METH, 'M' )
N4SID = LSAME( METH, 'N' )
WITHD = LSAME( JOB, 'D' )
WITHB = LSAME( JOB, 'B' ) .OR. WITHD
MNOBR = M*NOBR
LNOBR = L*NOBR
LDUN2 = LNOBR - L
LP1 = L + 1
IF ( MOESP ) THEN
NROW = LNOBR - N
ELSE
NROW = N + L
END IF
NROWML = NROW - L
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.( MOESP .OR. N4SID ) ) THEN
INFO = -1
ELSE IF( .NOT.( WITHB .OR. LSAME( JOB, 'N' ) ) ) THEN
INFO = -2
ELSE IF( NOBR.LE.1 ) THEN
INFO = -3
ELSE IF( N.GE.NOBR .OR. N.LE.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( L.LE.0 ) THEN
INFO = -6
ELSE IF( ( MOESP .AND. WITHB .AND. M.GT.0 ) .AND.
$ ( RANKR1.LT.ZERO .OR. RANKR1.GT.N ) ) THEN
INFO = -7
ELSE IF( ( MOESP .AND. LDUL.LT.LNOBR ) .OR.
$ ( N4SID .AND. LDUL.LT.NROW ) ) THEN
INFO = -9
ELSE IF( LDR1.LT.1 .OR. ( M.GT.0 .AND. WITHB .AND. MOESP .AND.
$ LDR1.LT.LDUN2 .AND. RANKR1.EQ.N ) ) THEN
INFO = -11
ELSE IF( LDPGAL.LT.1 .OR.
$ ( LDPGAL.LT.N .AND. ( N4SID .OR. ( WITHB .AND. M.GT.0
$ .AND. ( MOESP .AND. RANKR1.LT.N ) ) ) ) )
$ THEN
INFO = -14
ELSE IF( LDK.LT.NROW ) THEN
INFO = -16
ELSE IF( LDR.LT.LNOBR ) THEN
INFO = -18
ELSE IF( LDH.LT.LNOBR ) THEN
INFO = -20
ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. WITHB .AND. LDB.LT.N ) )
$ THEN
INFO = -22
ELSE IF( LDD.LT.1 .OR. ( M.GT.0 .AND. WITHD .AND. LDD.LT.L ) )
$ THEN
INFO = -24
ELSE
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MINWRK = MAX( 2*L, LNOBR, L + MNOBR )
MAXWRK = MINWRK
MAXWRK = MAX( MAXWRK, L + L*ILAENV( 1, 'DGEQRF', ' ', NROW, L,
$ -1, -1 ) )
MAXWRK = MAX( MAXWRK, L + LDUN2*ILAENV( 1, 'DORMQR', 'LT',
$ NROW, LDUN2, L, -1 ) )
MAXWRK = MAX( MAXWRK, L + MNOBR*ILAENV( 1, 'DORMQR', 'LT',
$ NROW, MNOBR, L, -1 ) )
C
IF( M.GT.0 .AND. WITHB ) THEN
MINWRK = MAX( MINWRK, 4*LNOBR+1, LNOBR + M )
MAXWRK = MAX( MINWRK, MAXWRK, LNOBR +
$ M*ILAENV( 1, 'DORMQR', 'LT', LNOBR, M, LNOBR,
$ -1 ) )
END IF
C
IF ( LDWORK.LT.MINWRK ) THEN
INFO = -28
DWORK( 1 ) = MINWRK
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01PY', -INFO )
RETURN
END IF
C
C Construct in R the first block-row of Q, i.e., the
C (p/s)-by-L*s matrix [ Q_1s ... Q_12 Q_11 ], where
C Q_1i, defined above, is (p/s)-by-L, for i = 1:s.
C
IF ( MOESP ) THEN
C
DO 10 I = 1, NOBR
CALL MA02AD( 'Full', L, NROW, UL(L*(I-1)+1,N+1), LDUL,
$ R(1,L*(NOBR-I)+1), LDR )
10 CONTINUE
C
ELSE
JL = LNOBR
JM = LDUN2
C
DO 50 JI = 1, LDUN2, L
C
DO 40 J = JI + L - 1, JI, -1
C
DO 20 I = 1, N
R(I,J) = PGAL(I,JM) - UL(I,JL)
20 CONTINUE
C
DO 30 I = N + 1, NROW
R(I,J) = -UL(I,JL)
30 CONTINUE
C
JL = JL - 1
JM = JM - 1
40 CONTINUE
C
50 CONTINUE
C
DO 70 J = LNOBR, LDUN2 + 1, -1
C
DO 60 I = 1, NROW
R(I,J) = -UL(I,JL)
60 CONTINUE
C
JL = JL - 1
R(N+J-LDUN2,J) = ONE + R(N+J-LDUN2,J)
70 CONTINUE
END IF
C
C Triangularize the submatrix Q_1s using an orthogonal matrix S.
C Workspace: need 2*L, prefer L+L*NB.
C
ITAU = 1
JWORK = ITAU + L
C
CALL DGEQRF( NROW, L, R, LDR, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
C
C Apply the transformation S' to the matrix
C [ Q_1,s-1 ... Q_11 ]. Therefore,
C
C [ R P_s-1 P_s-2 ... P_2 P_1 ]
C S'[ Q_1,s ... Q_11 ] = [ ].
C [ 0 F_s-1 F_s-2 ... F_2 F_1 ]
C
C Workspace: need L*NOBR, prefer L+(L*NOBR-L)*NB.
C
CALL DORMQR( 'Left', 'Transpose', NROW, LDUN2, L, R, LDR,
$ DWORK(ITAU), R(1,LP1), LDR, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
C
C Apply the transformation S' to each of the submatrices K_i of
C Kexpand = [ K_1' K_2' ... K_s' ]', K_i = K(:,(i-1)*m+1:i*m)
C (i = 1:s) being (p/s)-by-m. Denote ( H_i' G_i' )' = S'K_i
C (i = 1:s), where H_i has L rows.
C Finally, H_i is saved in H(L*(i-1)+1:L*i,1:m), i = 1:s.
C (G_i is in K(L+1:p/s,(i-1)*m+1:i*m), i = 1:s.)
C Workspace: need L+M*NOBR, prefer L+M*NOBR*NB.
C
CALL DORMQR( 'Left', 'Transpose', NROW, MNOBR, L, R, LDR,
$ DWORK(ITAU), K, LDK, DWORK(JWORK), LDWORK-JWORK+1,
$ IERR )
C
C Put the rows to be annihilated (matrix F) in UL(1:p/s-L,1:L*s-L).
C
CALL DLACPY( 'Full', NROWML, LDUN2, R(LP1,LP1), LDR, UL, LDUL )
C
C Now, the structure of the transformed matrices is:
C
C [ R P_s-1 P_s-2 ... P_2 P_1 ] [ H_1 ]
C [ 0 R P_s-1 ... P_3 P_2 ] [ H_2 ]
C [ 0 0 R ... P_4 P_3 ] [ H_3 ]
C [ : : : : : ] [ : ]
C [ 0 0 0 ... R P_s-1 ] [ H_s-1 ]
C Q = [ 0 0 0 ... 0 R ], Kexpand = [ H_s ],
C [ 0 F_s-1 F_s-2 ... F_2 F_1 ] [ G_1 ]
C [ 0 0 F_s-1 ... F_3 F_2 ] [ G_2 ]
C [ : : : : : ] [ : ]
C [ 0 0 0 ... 0 F_s-1 ] [ G_s-1 ]
C [ 0 0 0 ... 0 0 ] [ G_s ]
C
C where the block-rows have been permuted, to better exploit the
C structure. The block-rows having R on the diagonal are dealt
C with successively in the array R.
C The F submatrices are stored in the array UL, as a block-row.
C
C Copy H_1 in H(1:L,1:m).
C
CALL DLACPY( 'Full', L, M, K, LDK, H, LDH )
C
C Triangularize the transformed matrix exploiting its structure.
C Workspace: need L+MAX(L-1,L*NOBR-2*L,M*(NOBR-1)).
C
DO 90 I = 1, NOBR - 1
C
C Copy part of the preceding block-row and then annihilate the
C current submatrix F_s-i using an orthogonal matrix modifying
C the corresponding submatrix R. Simultaneously, apply the
C transformation to the corresponding block-rows of the matrices
C R and F.
C
CALL DLACPY( 'Upper', L, LNOBR-L*I, R(L*(I-1)+1,L*(I-1)+1),
$ LDR, R(L*I+1,L*I+1), LDR )
CALL MB04OD( 'Full', L, LNOBR-L*(I+1), NROWML, R(L*I+1,L*I+1),
$ LDR, UL(1,L*(I-1)+1), LDUL, R(L*I+1,L*(I+1)+1),
$ LDR, UL(1,L*I+1), LDUL, DWORK(ITAU), DWORK(JWORK)
$ )
C
C Apply the transformation to the corresponding block-rows of
C the matrix G and copy H_(i+1) in H(L*i+1:L*(i+1),1:m).
C
DO 80 J = 1, L
CALL MB04OY( NROWML, M*(NOBR-I), UL(1,L*(I-1)+J), DWORK(J),
$ K(J,M*I+1), LDK, K(LP1,1), LDK, DWORK(JWORK) )
80 CONTINUE
C
CALL DLACPY( 'Full', L, M, K(1,M*I+1), LDK, H(L*I+1,1), LDH )
90 CONTINUE
C
C Return if only the factorization is needed.
C
IF( M.EQ.0 .OR. .NOT.WITHB ) THEN
DWORK(1) = MAXWRK
RETURN
END IF
C
C Set the precision parameters. A threshold value EPS**(2/3) is
C used for deciding to use pivoting or not, where EPS is the
C relative machine precision (see LAPACK Library routine DLAMCH).
C
EPS = DLAMCH( 'Precision' )
THRESH = EPS**( TWO/THREE )
TOLL = TOL
IF( TOLL.LE.ZERO )
$ TOLL = LNOBR*LNOBR*EPS
SVLMAX = ZERO
C
C Compute the reciprocal of the condition number of the triangular
C factor R of Q.
C Workspace: need 3*L*NOBR.
C
CALL DTRCON( '1-norm', 'Upper', 'NonUnit', LNOBR, R, LDR, RCOND,
$ DWORK, IWORK, IERR )
C
IF ( RCOND.GT.MAX( TOLL, THRESH ) ) THEN
C
C The triangular factor R is considered to be of full rank.
C Solve for X, R*X = H.
C
CALL DTRSM( 'Left', 'Upper', 'NoTranspose', 'Non-unit',
$ LNOBR, M, ONE, R, LDR, H, LDH )
ELSE
C
C Rank-deficient triangular factor R. Compute the
C minimum-norm least squares solution of R*X = H using
C the complete orthogonal factorization of R.
C
DO 100 I = 1, LNOBR
IWORK(I) = 0
100 CONTINUE
C
C Workspace: need 4*L*NOBR+1;
C prefer 3*L*NOBR+(L*NOBR+1)*NB.
C
JWORK = ITAU + LNOBR
CALL DLASET( 'Lower', LNOBR-1, LNOBR, ZERO, ZERO, R(2,1), LDR )
CALL MB03OD( 'QR', LNOBR, LNOBR, R, LDR, IWORK, TOLL, SVLMAX,
$ DWORK(ITAU), RANK, SVAL, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need L*NOBR+M; prefer L*NOBR+M*NB.
C
CALL DORMQR( 'Left', 'Transpose', LNOBR, M, LNOBR, R, LDR,
$ DWORK(ITAU), H, LDH, DWORK(JWORK), LDWORK-JWORK+1,
$ IERR )
IF ( RANK.LT.LNOBR ) THEN
C
C The least squares problem is rank-deficient.
C
IWARN = 4
END IF
C
C Workspace: need L*NOBR+max(L*NOBR,M); prefer larger.
C
CALL MB02QY( LNOBR, LNOBR, M, RANK, R, LDR, IWORK, H, LDH,
$ DWORK(ITAU), DWORK(JWORK), LDWORK-JWORK+1, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) + JWORK - 1 )
END IF
C
C Construct the matrix D, if needed.
C
IF ( WITHD )
$ CALL DLACPY( 'Full', L, M, H(LDUN2+1,1), LDH, D, LDD )
C
C Compute B by solving another linear system (possibly in
C a least squares sense).
C
C Make a block-permutation of the rows of the right-hand side, H,
C to construct the matrix
C
C [ H(L*(s-2)+1:L*(s-1),:); ... H(L+1:L*2,:); H(1:L),:) ]
C
C in H(1:L*s-L,1:n).
C
NOBRH = NOBR/2 + MOD( NOBR, 2 ) - 1
C
DO 120 J = 1, M
C
DO 110 I = 1, NOBRH
CALL DSWAP( L, H(L*(I-1)+1,J), 1, H(L*(NOBR-I-1)+1,J), 1 )
110 CONTINUE
C
120 CONTINUE
C
C Solve for B the matrix equation GaL*B = H(1:L*s-L,:), using
C the available QR factorization of GaL, if METH = 'M' and
C rank(GaL) = n, or the available pseudoinverse of GaL, otherwise.
C
IF ( MOESP .AND. RANKR1.EQ.N ) THEN
C
C The triangular factor r1 of GaL is considered to be of
C full rank. Compute Q1'*H in H and then solve for B,
C r1*B = H(1:n,:) in B, where Q1 is the orthogonal matrix
C in the QR factorization of GaL.
C Workspace: need M; prefer M*NB.
C
CALL DORMQR( 'Left', 'Transpose', LDUN2, M, N, R1, LDR1,
$ TAU1, H, LDH, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
C Compute the solution in B.
C
CALL DLACPY( 'Full', N, M, H, LDH, B, LDB )
C
CALL DTRTRS( 'Upper', 'NoTranspose', 'NonUnit', N, M, R1, LDR1,
$ B, LDB, IERR )
IF ( IERR.GT.0 ) THEN
INFO = 3
RETURN
END IF
ELSE
C
C Rank-deficient triangular factor r1. Use the available
C pseudoinverse of GaL for computing B from GaL*B = H.
C
CALL DGEMM ( 'NoTranspose', 'NoTranspose', N, M, LDUN2, ONE,
$ PGAL, LDPGAL, H, LDH, ZERO, B, LDB )
END IF
C
C Return optimal workspace in DWORK(1) and reciprocal condition
C number in DWORK(2).
C
DWORK(1) = MAXWRK
DWORK(2) = RCOND
C
RETURN
C
C *** Last line of IB01PY ***
END
|