1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
|
SUBROUTINE IB01RD( JOB, N, M, L, NSMP, A, LDA, B, LDB, C, LDC, D,
$ LDD, U, LDU, Y, LDY, X0, TOL, IWORK, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate the initial state of a linear time-invariant (LTI)
C discrete-time system, given the system matrices (A,B,C,D) and
C the input and output trajectories of the system. The model
C structure is :
C
C x(k+1) = Ax(k) + Bu(k), k >= 0,
C y(k) = Cx(k) + Du(k),
C
C where x(k) is the n-dimensional state vector (at time k),
C u(k) is the m-dimensional input vector,
C y(k) is the l-dimensional output vector,
C and A, B, C, and D are real matrices of appropriate dimensions.
C Matrix A is assumed to be in a real Schur form.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies whether or not the matrix D is zero, as follows:
C = 'Z': the matrix D is zero;
C = 'N': the matrix D is not zero.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L > 0.
C
C NSMP (input) INTEGER
C The number of rows of matrices U and Y (number of
C samples used, t). NSMP >= N.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A in a real Schur form.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B (corresponding to the real Schur
C form of A).
C If N = 0 or M = 0, this array is not referenced.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= N, if N > 0 and M > 0;
C LDB >= 1, if N = 0 or M = 0.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading L-by-N part of this array must contain the
C system output matrix C (corresponding to the real Schur
C form of A).
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= L.
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading L-by-M part of this array must contain the
C system input-output matrix.
C If M = 0 or JOB = 'Z', this array is not referenced.
C
C LDD INTEGER
C The leading dimension of the array D.
C LDD >= L, if M > 0 and JOB = 'N';
C LDD >= 1, if M = 0 or JOB = 'Z'.
C
C U (input) DOUBLE PRECISION array, dimension (LDU,M)
C If M > 0, the leading NSMP-by-M part of this array must
C contain the t-by-m input-data sequence matrix U,
C U = [u_1 u_2 ... u_m]. Column j of U contains the
C NSMP values of the j-th input component for consecutive
C time increments.
C If M = 0, this array is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= MAX(1,NSMP), if M > 0;
C LDU >= 1, if M = 0.
C
C Y (input) DOUBLE PRECISION array, dimension (LDY,L)
C The leading NSMP-by-L part of this array must contain the
C t-by-l output-data sequence matrix Y,
C Y = [y_1 y_2 ... y_l]. Column j of Y contains the
C NSMP values of the j-th output component for consecutive
C time increments.
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= MAX(1,NSMP).
C
C X0 (output) DOUBLE PRECISION array, dimension (N)
C The estimated initial state of the system, x(0).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for estimating the rank of
C matrices. If the user sets TOL > 0, then the given value
C of TOL is used as a lower bound for the reciprocal
C condition number; a matrix whose estimated condition
C number is less than 1/TOL is considered to be of full
C rank. If the user sets TOL <= 0, then EPS is used
C instead, where EPS is the relative machine precision
C (see LAPACK Library routine DLAMCH). TOL <= 1.
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains the reciprocal condition
C number of the triangular factor of the QR factorization of
C the matrix Gamma (see METHOD).
C On exit, if INFO = -22, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( 2, min( LDW1, LDW2 ) ), where
C LDW1 = t*L*(N + 1) + 2*N + max( 2*N*N, 4*N ),
C LDW2 = N*(N + 1) + 2*N +
C max( q*(N + 1) + 2*N*N + L*N, 4*N ),
C q = N*L.
C For good performance, LDWORK should be larger.
C If LDWORK >= LDW1, then standard QR factorization of
C the matrix Gamma (see METHOD) is used. Otherwise, the
C QR factorization is computed sequentially by performing
C NCYCLE cycles, each cycle (except possibly the last one)
C processing s samples, where s is chosen by equating
C LDWORK to LDW2, for q replaced by s*L.
C The computational effort may increase and the accuracy may
C decrease with the decrease of s. Recommended value is
C LDRWRK = LDW1, assuming a large enough cache size, to
C also accommodate A, B, C, D, U, and Y.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 4: the least squares problem to be solved has a
C rank-deficient coefficient matrix.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 2: the singular value decomposition (SVD) algorithm did
C not converge.
C
C METHOD
C
C An extension and refinement of the method in [1] is used.
C Specifically, the output y0(k) of the system for zero initial
C state is computed for k = 0, 1, ..., t-1 using the given model.
C Then the following least squares problem is solved for x(0)
C
C ( C ) ( y(0) - y0(0) )
C ( C*A ) ( y(1) - y0(1) )
C Gamma * x(0) = ( : ) * x(0) = ( : ).
C ( : ) ( : )
C ( C*A^(t-1) ) ( y(t-1) - y0(t-1) )
C
C The coefficient matrix Gamma is evaluated using powers of A with
C exponents 2^k. The QR decomposition of this matrix is computed.
C If its triangular factor R is too ill conditioned, then singular
C value decomposition of R is used.
C
C If the coefficient matrix cannot be stored in the workspace (i.e.,
C LDWORK < LDW1), the QR decomposition is computed sequentially.
C
C REFERENCES
C
C [1] Verhaegen M., and Varga, A.
C Some Experience with the MOESP Class of Subspace Model
C Identification Methods in Identifying the BO105 Helicopter.
C Report TR R165-94, DLR Oberpfaffenhofen, 1994.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Feb. 2004.
C
C KEYWORDS
C
C Identification methods; least squares solutions; multivariable
C systems; QR decomposition; singular value decomposition.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
C IBLOCK is a threshold value for switching to a block algorithm
C for U (to avoid row by row passing through U).
INTEGER IBLOCK
PARAMETER ( IBLOCK = 16384 )
C .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, IWARN, L, LDA, LDB, LDC, LDD, LDU,
$ LDWORK, LDY, M, N, NSMP
CHARACTER JOB
C .. Array Arguments ..
DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *), D(LDD, *),
$ DWORK(*), U(LDU, *), X0(*), Y(LDY, *)
INTEGER IWORK(*)
C .. Local Scalars ..
DOUBLE PRECISION RCOND, TOLL
INTEGER I2, IA, IAS, IC, ICYCLE, IE, IERR, IEXPON,
$ IG, INIGAM, INIH, INIR, INIT, IQ, IREM, IRHS,
$ ISIZE, ISV, ITAU, IU, IUPNT, IUT, IUTRAN, IX,
$ IXINIT, IY, IYPNT, J, JWORK, K, LDDW, LDR,
$ LDW1, LDW2, MAXWRK, MINSMP, MINWLS, MINWRK, NC,
$ NCP1, NCYCLE, NN, NOBS, NRBL, NROW, NSMPL, RANK
LOGICAL BLOCK, FIRST, NCYC, POWER2, SWITCH, WITHD
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGELSS, DGEMV, DGEQRF, DLACPY,
$ DLASET, DORMQR, DTRCON, DTRMM, DTRMV, DTRSV,
$ MA02AD, MB01TD, MB04OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, LOG, MAX, MIN, MOD
C .. Executable Statements ..
C
C Check the input parameters.
C
WITHD = LSAME( JOB, 'N' )
IWARN = 0
INFO = 0
NN = N*N
MINSMP = N
C
IF( .NOT.( LSAME( JOB, 'Z' ) .OR. WITHD ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( L.LE.0 ) THEN
INFO = -4
ELSE IF( NSMP.LT.MINSMP ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.1 .OR. ( LDB.LT.N .AND. M.GT.0 ) ) THEN
INFO = -9
ELSE IF( LDC.LT.L ) THEN
INFO = -11
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.L .AND. M.GT.0 ) )
$ THEN
INFO = -13
ELSE IF( LDU.LT.1 .OR. ( M.GT.0 .AND. LDU.LT.NSMP ) ) THEN
INFO = -15
ELSE IF( LDY.LT.MAX( 1, NSMP ) ) THEN
INFO = -17
ELSE IF( TOL.GT.ONE ) THEN
INFO = -19
END IF
C
C Compute workspace.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
NSMPL = NSMP*L
IQ = MINSMP*L
NCP1 = N + 1
ISIZE = NSMPL*NCP1
IC = 2*NN
MINWLS = MINSMP*NCP1
ITAU = IC + L*N
LDW1 = ISIZE + 2*N + MAX( IC, 4*N )
LDW2 = MINWLS + 2*N + MAX( IQ*NCP1 + ITAU, 4*N )
MINWRK = MAX( MIN( LDW1, LDW2 ), 2 )
IF ( INFO.EQ.0 .AND. LDWORK.GE.MINWRK ) THEN
MAXWRK = ISIZE + 2*N + MAX( N*ILAENV( 1, 'DGEQRF', ' ', NSMPL,
$ N, -1, -1 ),
$ ILAENV( 1, 'DORMQR', 'LT', NSMPL,
$ 1, N, -1 ) )
MAXWRK = MAX( MAXWRK, MINWRK )
END IF
C
IF ( INFO.EQ.0 .AND. LDWORK.LT.MINWRK ) THEN
INFO = -22
DWORK(1) = MINWRK
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB01RD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
DWORK(1) = TWO
DWORK(2) = ONE
RETURN
END IF
C
C Set up the least squares problem, either directly, if enough
C workspace, or sequentially, otherwise.
C
IYPNT = 1
IUPNT = 1
INIR = 1
IF ( LDWORK.GE.LDW1 ) THEN
C
C Enough workspace for solving the problem directly.
C
NCYCLE = 1
NOBS = NSMP
LDDW = NSMPL
INIGAM = 1
ELSE
C
C NCYCLE > 1 cycles are needed for solving the problem
C sequentially, taking NOBS samples in each cycle (or the
C remaining samples in the last cycle).
C
JWORK = LDWORK - MINWLS - 2*N - ITAU
LDDW = JWORK/NCP1
NOBS = LDDW/L
LDDW = L*NOBS
NCYCLE = NSMP/NOBS
IF ( MOD( NSMP, NOBS ).NE.0 )
$ NCYCLE = NCYCLE + 1
INIH = INIR + NN
INIGAM = INIH + N
END IF
C
NCYC = NCYCLE.GT.1
IRHS = INIGAM + LDDW*N
IXINIT = IRHS + LDDW
IC = IXINIT + N
IF( NCYC ) THEN
IA = IC + L*N
LDR = N
IE = INIGAM
ELSE
INIH = IRHS
IA = IC
LDR = LDDW
IE = IXINIT
END IF
IUTRAN = IA
IAS = IA + NN
ITAU = IA
DUM(1) = ZERO
C
C Set block parameters for passing through the array U.
C
BLOCK = M.GT.1 .AND. NSMP*M.GE.IBLOCK
IF ( BLOCK ) THEN
NRBL = ( LDWORK - IUTRAN + 1 )/M
NC = NOBS/NRBL
IF ( MOD( NOBS, NRBL ).NE.0 )
$ NC = NC + 1
INIT = ( NC - 1 )*NRBL
BLOCK = BLOCK .AND. NRBL.GT.1
END IF
C
C Perform direct of sequential compression of the matrix Gamma.
C
DO 150 ICYCLE = 1, NCYCLE
FIRST = ICYCLE.EQ.1
IF ( .NOT.FIRST ) THEN
IF ( ICYCLE.EQ.NCYCLE ) THEN
NOBS = NSMP - ( NCYCLE - 1 )*NOBS
LDDW = L*NOBS
IF ( BLOCK ) THEN
NC = NOBS/NRBL
IF ( MOD( NOBS, NRBL ).NE.0 )
$ NC = NC + 1
INIT = ( NC - 1 )*NRBL
END IF
END IF
END IF
C
C Compute the extended observability matrix Gamma.
C Workspace: need s*L*(N + 1) + 2*N*N + 2*N + a + w,
C where s = NOBS,
C a = 0, w = 0, if NCYCLE = 1,
C a = L*N, w = N*(N + 1), if NCYCLE > 1;
C prefer as above, with s = t, a = w = 0.
C
JWORK = IAS + NN
IEXPON = INT( LOG( DBLE( NOBS ) )/LOG( TWO ) )
IREM = L*( NOBS - 2**IEXPON )
POWER2 = IREM.EQ.0
IF ( .NOT.POWER2 )
$ IEXPON = IEXPON + 1
C
IF ( FIRST ) THEN
CALL DLACPY( 'Full', L, N, C, LDC, DWORK(INIGAM), LDDW )
ELSE
CALL DLACPY( 'Full', L, N, DWORK(IC), L, DWORK(INIGAM),
$ LDDW )
END IF
C p
C Use powers of the matrix A: A , p = 2**(J-1).
C
CALL DLACPY( 'Upper', N, N, A, LDA, DWORK(IA), N )
IF ( N.GT.1 )
$ CALL DCOPY( N-1, A(2,1), LDA+1, DWORK(IA+1), N+1 )
I2 = L
NROW = 0
C
DO 20 J = 1, IEXPON
IG = INIGAM
IF ( J.LT.IEXPON .OR. POWER2 ) THEN
NROW = I2
ELSE
NROW = IREM
END IF
C
CALL DLACPY( 'Full', NROW, N, DWORK(IG), LDDW, DWORK(IG+I2),
$ LDDW )
CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non Unit',
$ NROW, N, ONE, DWORK(IA), N, DWORK(IG+I2),
$ LDDW )
C p
C Compute the contribution of the subdiagonal of A to the
C product.
C
DO 10 IX = 1, N - 1
CALL DAXPY( NROW, DWORK(IA+(IX-1)*N+IX), DWORK(IG+LDDW),
$ 1, DWORK(IG+I2), 1 )
IG = IG + LDDW
10 CONTINUE
C
IF ( J.LT.IEXPON ) THEN
CALL DLACPY( 'Upper', N, N, DWORK(IA), N, DWORK(IAS), N )
CALL DCOPY( N-1, DWORK(IA+1), N+1, DWORK(IAS+1), N+1 )
CALL MB01TD( N, DWORK(IAS), N, DWORK(IA), N,
$ DWORK(JWORK), IERR )
I2 = I2*2
END IF
20 CONTINUE
C
IF ( NCYC ) THEN
IG = INIGAM + I2 + NROW - L
CALL DLACPY( 'Full', L, N, DWORK(IG), LDDW, DWORK(IC), L )
CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non Unit', L,
$ N, ONE, A, LDA, DWORK(IC), L )
C
C Compute the contribution of the subdiagonal of A to the
C product.
C
DO 30 IX = 1, N - 1
CALL DAXPY( L, A(IX+1,IX), DWORK(IG+LDDW), 1,
$ DWORK(IC+(IX-1)*L), 1 )
IG = IG + LDDW
30 CONTINUE
C
END IF
C
C Setup (part of) the right hand side of the least squares
C problem starting from DWORK(IRHS); use the estimated output
C trajectory for zero initial state, or for the saved final state
C value of the previous cycle.
C A specialization of SLICOT Library routine TF01ND is used.
C For large input sets (NSMP*M >= IBLOCK), chunks of U are
C transposed, to reduce the number of row-wise passes.
C Workspace: need s*L*(N + 1) + N + w;
C prefer as above, with s = t, w = 0.
C
IF ( FIRST )
$ CALL DCOPY( N, DUM, 0, DWORK(IXINIT), 1 )
CALL DCOPY( N, DWORK(IXINIT), 1, X0, 1 )
IY = IRHS
C
DO 40 J = 1, L
CALL DCOPY( NOBS, Y(IYPNT,J), 1, DWORK(IY), L )
IY = IY + 1
40 CONTINUE
C
IY = IRHS
IU = IUPNT
IF ( M.GT.0 ) THEN
IF ( WITHD ) THEN
C
IF ( BLOCK ) THEN
SWITCH = .TRUE.
NROW = NRBL
C
DO 60 K = 1, NOBS
IF ( MOD( K-1, NROW ).EQ.0 .AND. SWITCH ) THEN
IUT = IUTRAN
IF ( K.GT.INIT ) THEN
NROW = NOBS - INIT
SWITCH = .FALSE.
END IF
CALL MA02AD( 'Full', NROW, M, U(IU,1), LDU,
$ DWORK(IUT), M )
IU = IU + NROW
END IF
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DGEMV( 'No transpose', L, M, -ONE, D, LDD,
$ DWORK(IUT), 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 50 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
50 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ DWORK(IUT), 1, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IUT = IUT + M
60 CONTINUE
C
ELSE
C
DO 80 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DGEMV( 'No transpose', L, M, -ONE, D, LDD,
$ U(IU,1), LDU, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 70 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
70 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IU,1), LDU, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IU = IU + 1
80 CONTINUE
C
END IF
C
ELSE
C
IF ( BLOCK ) THEN
SWITCH = .TRUE.
NROW = NRBL
C
DO 100 K = 1, NOBS
IF ( MOD( K-1, NROW ).EQ.0 .AND. SWITCH ) THEN
IUT = IUTRAN
IF ( K.GT.INIT ) THEN
NROW = NOBS - INIT
SWITCH = .FALSE.
END IF
CALL MA02AD( 'Full', NROW, M, U(IU,1), LDU,
$ DWORK(IUT), M )
IU = IU + NROW
END IF
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 90 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
90 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ DWORK(IUT), 1, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IUT = IUT + M
100 CONTINUE
C
ELSE
C
DO 120 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0,
$ 1, ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N,
$ A, LDA, X0, 1 )
C
DO 110 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
110 CONTINUE
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IU,1), LDU, ONE, X0, 1 )
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
IU = IU + 1
120 CONTINUE
C
END IF
C
END IF
C
ELSE
C
DO 140 K = 1, NOBS
CALL DGEMV( 'No transpose', L, N, -ONE, C, LDC, X0, 1,
$ ONE, DWORK(IY), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N, A,
$ LDA, X0, 1 )
C
DO 130 IX = 2, N
X0(IX) = X0(IX) + A(IX,IX-1)*DWORK(IXINIT+IX-2)
130 CONTINUE
C
CALL DCOPY( N, X0, 1, DWORK(IXINIT), 1 )
IY = IY + L
140 CONTINUE
C
END IF
C
C Compress the data using (sequential) QR factorization.
C Workspace: need v + 2*N;
C where v = s*L*(N + 1) + N + a + w.
C
JWORK = ITAU + N
IF ( FIRST ) THEN
C
C Compress the first data segment of Gamma.
C Workspace: need v + 2*N,
C prefer v + N + N*NB.
C
CALL DGEQRF( LDDW, N, DWORK(INIGAM), LDDW, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
C Apply the transformation to the right hand side part.
C Workspace: need v + N + 1,
C prefer v + N + NB.
C
CALL DORMQR( 'Left', 'Transpose', LDDW, 1, N, DWORK(INIGAM),
$ LDDW, DWORK(ITAU), DWORK(IRHS), LDDW,
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
C
IF ( NCYC ) THEN
C
C Save the triangular factor of Gamma and the
C corresponding right hand side.
C
CALL DLACPY( 'Upper', N, NCP1, DWORK(INIGAM), LDDW,
$ DWORK(INIR), LDR )
END IF
ELSE
C
C Compress the current (but not the first) data segment of
C Gamma.
C Workspace: need v + N - 1.
C
CALL MB04OD( 'Full', N, 1, LDDW, DWORK(INIR), LDR,
$ DWORK(INIGAM), LDDW, DWORK(INIH), LDR,
$ DWORK(IRHS), LDDW, DWORK(ITAU), DWORK(JWORK) )
END IF
C
IUPNT = IUPNT + NOBS
IYPNT = IYPNT + NOBS
150 CONTINUE
C
C Estimate the reciprocal condition number of the triangular factor
C of the QR decomposition.
C Workspace: need u + 3*N, where
C u = t*L*(N + 1), if NCYCLE = 1;
C u = w, if NCYCLE > 1.
C
CALL DTRCON( '1-norm', 'Upper', 'No Transpose', N, DWORK(INIR),
$ LDR, RCOND, DWORK(IE), IWORK, IERR )
C
TOLL = TOL
IF ( TOLL.LE.ZERO )
$ TOLL = DLAMCH( 'Precision' )
IF ( RCOND.LE.TOLL**( TWO/THREE ) ) THEN
IWARN = 4
C
C The least squares problem is ill-conditioned.
C Use SVD to solve it.
C Workspace: need u + 6*N;
C prefer larger.
C
CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, DWORK(INIR+1),
$ LDR )
ISV = IE
JWORK = ISV + N
CALL DGELSS( N, N, 1, DWORK(INIR), LDR, DWORK(INIH), LDR,
$ DWORK(ISV), TOLL, RANK, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
IF ( IERR.GT.0 ) THEN
C
C Return if SVD algorithm did not converge.
C
INFO = 2
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK(JWORK) ) - JWORK + 1 )
ELSE
C
C Find the least squares solution using QR decomposition only.
C
CALL DTRSV( 'Upper', 'No Transpose', 'Non Unit', N,
$ DWORK(INIR), LDR, DWORK(INIH), 1 )
END IF
C
C Return the estimated initial state of the system x0.
C
CALL DCOPY( N, DWORK(INIH), 1, X0, 1 )
C
DWORK(1) = MAXWRK
DWORK(2) = RCOND
C
RETURN
C
C *** End of IB01RD ***
END
|