1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
|
SUBROUTINE IB03AD( INIT, ALG, STOR, NOBR, M, L, NSMP, N, NN,
$ ITMAX1, ITMAX2, NPRINT, U, LDU, Y, LDY, X, LX,
$ TOL1, TOL2, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a set of parameters for approximating a Wiener system
C in a least-squares sense, using a neural network approach and a
C Levenberg-Marquardt algorithm. Conjugate gradients (CG) or
C Cholesky algorithms are used to solve linear systems of equations.
C The Wiener system is represented as
C
C x(t+1) = A*x(t) + B*u(t)
C z(t) = C*x(t) + D*u(t),
C
C y(t) = f(z(t),wb(1:L)),
C
C where t = 1, 2, ..., NSMP, and f is a nonlinear function,
C evaluated by the SLICOT Library routine NF01AY. The parameter
C vector X is partitioned as X = ( wb(1), ..., wb(L), theta ),
C where wb(i), i = 1 : L, correspond to the nonlinear part, and
C theta corresponds to the linear part. See SLICOT Library routine
C NF01AD for further details.
C
C The sum of squares of the error functions, defined by
C
C e(t) = y(t) - Y(t), t = 1, 2, ..., NSMP,
C
C is minimized, where Y(t) is the measured output vector. The
C functions and their Jacobian matrices are evaluated by SLICOT
C Library routine NF01BB (the FCN routine in the call of MD03AD).
C
C ARGUMENTS
C
C Mode Parameters
C
C INIT CHARACTER*1
C Specifies which parts have to be initialized, as follows:
C = 'L' : initialize the linear part only, X already
C contains an initial approximation of the
C nonlinearity;
C = 'S' : initialize the static nonlinearity only, X
C already contains an initial approximation of the
C linear part;
C = 'B' : initialize both linear and nonlinear parts;
C = 'N' : do not initialize anything, X already contains
C an initial approximation.
C If INIT = 'S' or 'B', the error functions for the
C nonlinear part, and their Jacobian matrices, are evaluated
C by SLICOT Library routine NF01BA (used as a second FCN
C routine in the MD03AD call for the initialization step,
C see METHOD).
C
C ALG CHARACTER*1
C Specifies the algorithm used for solving the linear
C systems involving a Jacobian matrix J, as follows:
C = 'D' : a direct algorithm, which computes the Cholesky
C factor of the matrix J'*J + par*I is used, where
C par is the Levenberg factor;
C = 'I' : an iterative Conjugate Gradients algorithm, which
C only needs the matrix J, is used.
C In both cases, matrix J is stored in a compressed form.
C
C STOR CHARACTER*1
C If ALG = 'D', specifies the storage scheme for the
C symmetric matrix J'*J, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C The option STOR = 'F' usually ensures a faster execution.
C This parameter is not relevant if ALG = 'I'.
C
C Input/Output Parameters
C
C NOBR (input) INTEGER
C If INIT = 'L' or 'B', NOBR is the number of block rows, s,
C in the input and output block Hankel matrices to be
C processed for estimating the linear part. NOBR > 0.
C (In the MOESP theory, NOBR should be larger than n,
C the estimated dimension of state vector.)
C This parameter is ignored if INIT is 'S' or 'N'.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L >= 0, and L > 0, if
C INIT = 'L' or 'B'.
C
C NSMP (input) INTEGER
C The number of input and output samples, t. NSMP >= 0, and
C NSMP >= 2*(M+L+1)*NOBR - 1, if INIT = 'L' or 'B'.
C
C N (input/output) INTEGER
C The order of the linear part.
C If INIT = 'L' or 'B', and N < 0 on entry, the order is
C assumed unknown and it will be found by the routine.
C Otherwise, the input value will be used. If INIT = 'S'
C or 'N', N must be non-negative. The values N >= NOBR,
C or N = 0, are not acceptable if INIT = 'L' or 'B'.
C
C NN (input) INTEGER
C The number of neurons which shall be used to approximate
C the nonlinear part. NN >= 0.
C
C ITMAX1 (input) INTEGER
C The maximum number of iterations for the initialization of
C the static nonlinearity.
C This parameter is ignored if INIT is 'N' or 'L'.
C Otherwise, ITMAX1 >= 0.
C
C ITMAX2 (input) INTEGER
C The maximum number of iterations. ITMAX2 >= 0.
C
C NPRINT (input) INTEGER
C This parameter enables controlled printing of iterates if
C it is positive. In this case, FCN is called with IFLAG = 0
C at the beginning of the first iteration and every NPRINT
C iterations thereafter and immediately prior to return,
C and the current error norm is printed. Other intermediate
C results could be printed by modifying the corresponding
C FCN routine (NF01BA and/or NF01BB). If NPRINT <= 0, no
C special calls of FCN with IFLAG = 0 are made.
C
C U (input) DOUBLE PRECISION array, dimension (LDU, M)
C The leading NSMP-by-M part of this array must contain the
C set of input samples,
C U = ( U(1,1),...,U(1,M); ...; U(NSMP,1),...,U(NSMP,M) ).
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,NSMP).
C
C Y (input) DOUBLE PRECISION array, dimension (LDY, L)
C The leading NSMP-by-L part of this array must contain the
C set of output samples,
C Y = ( Y(1,1),...,Y(1,L); ...; Y(NSMP,1),...,Y(NSMP,L) ).
C
C LDY INTEGER
C The leading dimension of array Y. LDY >= MAX(1,NSMP).
C
C X (input/output) DOUBLE PRECISION array dimension (LX)
C On entry, if INIT = 'L', the leading (NN*(L+2) + 1)*L part
C of this array must contain the initial parameters for
C the nonlinear part of the system.
C On entry, if INIT = 'S', the elements lin1 : lin2 of this
C array must contain the initial parameters for the linear
C part of the system, corresponding to the output normal
C form, computed by SLICOT Library routine TB01VD, where
C lin1 = (NN*(L+2) + 1)*L + 1;
C lin2 = (NN*(L+2) + 1)*L + N*(L+M+1) + L*M.
C On entry, if INIT = 'N', the elements 1 : lin2 of this
C array must contain the initial parameters for the
C nonlinear part followed by the initial parameters for the
C linear part of the system, as specified above.
C This array need not be set on entry if INIT = 'B'.
C On exit, the elements 1 : lin2 of this array contain the
C optimal parameters for the nonlinear part followed by the
C optimal parameters for the linear part of the system, as
C specified above.
C
C LX (input/output) INTEGER
C On entry, this parameter must contain the intended length
C of X. If N >= 0, then LX >= NX := lin2 (see parameter X).
C If N is unknown (N < 0 on entry), a large enough estimate
C of N should be used in the formula of lin2.
C On exit, if N < 0 on entry, but LX is not large enough,
C then this parameter contains the actual length of X,
C corresponding to the computed N. Otherwise, its value
C is unchanged.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If INIT = 'S' or 'B' and TOL1 >= 0, TOL1 is the tolerance
C which measures the relative error desired in the sum of
C squares, for the initialization step of nonlinear part.
C Termination occurs when the actual relative reduction in
C the sum of squares is at most TOL1. In addition, if
C ALG = 'I', TOL1 also measures the relative residual of
C the solutions computed by the CG algorithm (for the
C initialization step). Termination of a CG process occurs
C when the relative residual is at most TOL1.
C If the user sets TOL1 < 0, then SQRT(EPS) is used
C instead TOL1, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH).
C This parameter is ignored if INIT is 'N' or 'L'.
C
C TOL2 DOUBLE PRECISION
C If TOL2 >= 0, TOL2 is the tolerance which measures the
C relative error desired in the sum of squares, for the
C whole optimization process. Termination occurs when the
C actual relative reduction in the sum of squares is at
C most TOL2.
C If ALG = 'I', TOL2 also measures the relative residual of
C the solutions computed by the CG algorithm (for the whole
C optimization). Termination of a CG process occurs when the
C relative residual is at most TOL2.
C If the user sets TOL2 < 0, then SQRT(EPS) is used
C instead TOL2. This default value could require many
C iterations, especially if TOL1 is larger. If INIT = 'S'
C or 'B', it is advisable that TOL2 be larger than TOL1,
C and spend more time with cheaper iterations.
C
C Workspace
C
C IWORK INTEGER array, dimension (MAX( 3, LIW1, LIW2 )), where
C LIW1 = LIW2 = 0, if INIT = 'S' or 'N'; otherwise,
C LIW1 = M+L;
C LIW2 = MAX(M*NOBR+N,M*(N+L)).
C On output, if INFO = 0, IWORK(1) and IWORK(2) return the
C (total) number of function and Jacobian evaluations,
C respectively (including the initialization step, if it was
C performed), and if INIT = 'L' or INIT = 'B', IWORK(3)
C specifies how many locations of DWORK contain reciprocal
C condition number estimates (see below); otherwise,
C IWORK(3) = 0.
C
C DWORK DOUBLE PRECISION array dimesion (LDWORK)
C On entry, if desired, and if INIT = 'S' or 'B', the
C entries DWORK(1:4) are set to initialize the random
C numbers generator for the nonlinear part parameters (see
C the description of the argument XINIT of SLICOT Library
C routine MD03AD); this enables to obtain reproducible
C results. The same seed is used for all outputs.
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, DWORK(2) returns the residual error norm (the
C sum of squares), DWORK(3) returns the number of iterations
C performed, DWORK(4) returns the number of conjugate
C gradients iterations performed, and DWORK(5) returns the
C final Levenberg factor, for optimizing the parameters of
C both the linear part and the static nonlinearity part.
C If INIT = 'S' or INIT = 'B' and INFO = 0, then the
C elements DWORK(6) to DWORK(10) contain the corresponding
C five values for the initialization step (see METHOD).
C (If L > 1, DWORK(10) contains the maximum of the Levenberg
C factors for all outputs.) If INIT = 'L' or INIT = 'B', and
C INFO = 0, DWORK(11) to DWORK(10+IWORK(3)) contain
C reciprocal condition number estimates set by SLICOT
C Library routines IB01AD, IB01BD, and IB01CD.
C On exit, if INFO = -23, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C In the formulas below, N should be taken not larger than
C NOBR - 1, if N < 0 on entry.
C LDWORK = MAX( LW1, LW2, LW3, LW4 ), where
C LW1 = 0, if INIT = 'S' or 'N'; otherwise,
C LW1 = MAX( 2*(M+L)*NOBR*(2*(M+L)*(NOBR+1)+3) + L*NOBR,
C 4*(M+L)*NOBR*(M+L)*NOBR + (N+L)*(N+M) +
C MAX( LDW1, LDW2 ),
C (N+L)*(N+M) + N + N*N + 2 + N*(N+M+L) +
C MAX( 5*N, 2, MIN( LDW3, LDW4 ), LDW5, LDW6 ),
C where,
C LDW1 >= MAX( 2*(L*NOBR-L)*N+2*N, (L*NOBR-L)*N+N*N+7*N,
C L*NOBR*N +
C MAX( (L*NOBR-L)*N+2*N + (2*M+L)*NOBR+L,
C 2*(L*NOBR-L)*N+N*N+8*N,
C N+4*(M*NOBR+N)+1, M*NOBR+3*N+L ) )
C LDW2 >= 0, if M = 0;
C LDW2 >= L*NOBR*N + M*NOBR*(N+L)*(M*(N+L)+1) +
C MAX( (N+L)**2, 4*M*(N+L)+1 ), if M > 0;
C LDW3 = NSMP*L*(N+1) + 2*N + MAX( 2*N*N, 4*N ),
C LDW4 = N*(N+1) + 2*N +
C MAX( N*L*(N+1) + 2*N*N + L*N, 4*N );
C LDW5 = NSMP*L + (N+L)*(N+M) + 3*N+M+L;
C LDW6 = NSMP*L + (N+L)*(N+M) + N +
C MAX(1, N*N*L + N*L + N, N*N +
C MAX(N*N + N*MAX(N,L) + 6*N + MIN(N,L),
C N*M));
C LW2 = LW3 = 0, if INIT = 'L' or 'N'; otherwise,
C LW2 = NSMP*L +
C MAX( 5, NSMP + 2*BSN + NSMP*BSN +
C MAX( 2*NN + BSN, LDW7 ) );
C LDW7 = BSN*BSN, if ALG = 'D' and STOR = 'F';
C LDW7 = BSN*(BSN+1)/2, if ALG = 'D' and STOR = 'P';
C LDW7 = 3*BSN + NSMP, if ALG = 'I';
C LW3 = MAX( LDW8, NSMP*L + (N+L)*(2*N+M) + 2*N );
C LDW8 = NSMP*L + (N+L)*(N+M) + 3*N+M+L, if M > 0;
C LDW8 = NSMP*L + (N+L)*N + 2*N+L, if M = 0;
C LW4 = MAX( 5, NSMP*L + 2*NX + NSMP*L*( BSN + LTHS ) +
C MAX( L1 + NX, NSMP*L + L1, L2 ) ),
C L0 = MAX( N*(N+L), N+M+L ), if M > 0;
C L0 = MAX( N*(N+L), L ), if M = 0;
C L1 = NSMP*L + MAX( 2*NN, (N+L)*(N+M) + 2*N + L0);
C L2 = NX*NX, if ALG = 'D' and STOR = 'F';
C L2 = NX*(NX+1)/2, if ALG = 'D' and STOR = 'P';
C L2 = 3*NX + NSMP*L, if ALG = 'I',
C with BSN = NN*( L + 2 ) + 1,
C LTHS = N*( L + M + 1 ) + L*M.
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C < 0: the user set IFLAG = IWARN in (one of) the
C subroutine(s) FCN, i.e., NF01BA, if INIT = 'S'
C or 'B', and/or NF01BB; this value cannot be returned
C without changing the FCN routine(s);
C otherwise, IWARN has the value k*100 + j*10 + i,
C where k is defined below, i refers to the whole
C optimization process, and j refers to the
C initialization step (j = 0, if INIT = 'L' or 'N'),
C and the possible values for i and j have the
C following meaning (where TOL* denotes TOL1 or TOL2,
C and similarly for ITMAX*):
C = 1: the number of iterations has reached ITMAX* without
C satisfying the convergence condition;
C = 2: if alg = 'I' and in an iteration of the Levenberg-
C Marquardt algorithm, the CG algorithm finished
C after 3*NX iterations (or 3*(lin1-1) iterations, for
C the initialization phase), without achieving the
C precision required in the call;
C = 3: the cosine of the angle between the vector of error
C function values and any column of the Jacobian is at
C most FACTOR*EPS in absolute value (FACTOR = 100);
C = 4: TOL* is too small: no further reduction in the sum
C of squares is possible.
C The digit k is normally 0, but if INIT = 'L' or 'B', it
C can have a value in the range 1 to 6 (see IB01AD, IB01BD
C and IB01CD). In all these cases, the entries DWORK(1:5),
C DWORK(6:10) (if INIT = 'S' or 'B'), and
C DWORK(11:10+IWORK(3)) (if INIT = 'L' or 'B'), are set as
C described above.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C otherwise, INFO has the value k*100 + j*10 + i,
C where k is defined below, i refers to the whole
C optimization process, and j refers to the
C initialization step (j = 0, if INIT = 'L' or 'N'),
C and the possible values for i and j have the
C following meaning:
C = 1: the routine FCN returned with INFO <> 0 for
C IFLAG = 1;
C = 2: the routine FCN returned with INFO <> 0 for
C IFLAG = 2;
C = 3: ALG = 'D' and SLICOT Library routines MB02XD or
C NF01BU (or NF01BV, if INIT = 'S' or 'B') or
C ALG = 'I' and SLICOT Library routines MB02WD or
C NF01BW (or NF01BX, if INIT = 'S' or 'B') returned
C with INFO <> 0.
C In addition, if INIT = 'L' or 'B', i could also be
C = 4: if a Lyapunov equation could not be solved;
C = 5: if the identified linear system is unstable;
C = 6: if the QR algorithm failed on the state matrix
C of the identified linear system.
C The digit k is normally 0, but if INIT = 'L' or 'B', it
C can have a value in the range 1 to 10 (see IB01AD/IB01BD).
C
C METHOD
C
C If INIT = 'L' or 'B', the linear part of the system is
C approximated using the combined MOESP and N4SID algorithm. If
C necessary, this algorithm can also choose the order, but it is
C advantageous if the order is already known.
C
C If INIT = 'S' or 'B', the output of the approximated linear part
C is computed and used to calculate an approximation of the static
C nonlinearity using the Levenberg-Marquardt algorithm [1].
C This step is referred to as the (nonlinear) initialization step.
C
C As last step, the Levenberg-Marquardt algorithm is used again to
C optimize the parameters of the linear part and the static
C nonlinearity as a whole. Therefore, it is necessary to parametrise
C the matrices of the linear part. The output normal form [2]
C parameterisation is used.
C
C The Jacobian is computed analytically, for the nonlinear part, and
C numerically, for the linear part.
C
C REFERENCES
C
C [1] Kelley, C.T.
C Iterative Methods for Optimization.
C Society for Industrial and Applied Mathematics (SIAM),
C Philadelphia (Pa.), 1999.
C
C [2] Peeters, R.L.M., Hanzon, B., and Olivi, M.
C Balanced realizations of discrete-time stable all-pass
C systems and the tangential Schur algorithm.
C Proceedings of the European Control Conference,
C 31 August - 3 September 1999, Karlsruhe, Germany.
C Session CP-6, Discrete-time Systems, 1999.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C Mar. 2002, Apr. 2002, Feb. 2004, March 2005, Nov. 2005.
C
C KEYWORDS
C
C Conjugate gradients, least-squares approximation,
C Levenberg-Marquardt algorithm, matrix operations, optimization.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C The upper triangular part is used in MD03AD;
CHARACTER UPLO
PARAMETER ( UPLO = 'U' )
C For INIT = 'L' or 'B', additional parameters are set:
C The following six parameters are used in the call of IB01AD;
CHARACTER IALG, BATCH, CONCT, CTRL, JOBD, METH
PARAMETER ( IALG = 'Fast QR', BATCH = 'One batch',
$ CONCT = 'Not connect', CTRL = 'Not confirm',
$ JOBD = 'Not MOESP', METH = 'MOESP' )
C The following three parameters are used in the call of IB01BD;
CHARACTER JOB, JOBCK, METHB
PARAMETER ( JOB = 'All matrices',
$ JOBCK = 'No Kalman gain',
$ METHB = 'Combined MOESP+N4SID' )
C The following two parameters are used in the call of IB01CD;
CHARACTER COMUSE, JOBXD
PARAMETER ( COMUSE = 'Use B, D',
$ JOBXD = 'D also' )
C TOLN controls the estimated order in IB01AD (default value);
DOUBLE PRECISION TOLN
PARAMETER ( TOLN = -1.0D0 )
C RCOND controls the rank decisions in IB01AD, IB01BD, and IB01CD
C (default);
DOUBLE PRECISION RCOND
PARAMETER ( RCOND = -1.0D0 )
C .. Scalar Arguments ..
CHARACTER ALG, INIT, STOR
INTEGER INFO, ITMAX1, ITMAX2, IWARN, L, LDU, LDWORK,
$ LDY, LX, M, N, NN, NOBR, NPRINT, NSMP
DOUBLE PRECISION TOL1, TOL2
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), U(LDU, *), X(*), Y(LDY, *)
INTEGER IWORK(*)
C .. Local Scalars ..
INTEGER AC, BD, BSN, I, IA, IB, IK, INFOL, IQ, IR,
$ IRCND, IRCNDB, IRY, IS, ISAD, ISV, IV, IW1, IW2,
$ IWARNL, IX, IX0, J, JWORK, LDAC, LDR, LIPAR,
$ LNOL, LTHS, ML, MNO, N2, NFEV, NJEV, NS, NSML,
$ NTHS, NX, WRKOPT, Z
LOGICAL CHOL, FULL, INIT1, INIT2
C .. Local Arrays ..
LOGICAL BWORK(1)
INTEGER IPAR(7)
DOUBLE PRECISION RCND(16), SEED(4), WORK(5)
C .. External Functions ..
EXTERNAL LSAME
LOGICAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, IB01AD, IB01BD, IB01CD, MD03AD, NF01BA,
$ NF01BB, NF01BU, NF01BV, NF01BW, NF01BX, TB01VD,
$ TB01VY, TF01MX, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C ..
C .. Executable Statements ..
C
CHOL = LSAME( ALG, 'D' )
FULL = LSAME( STOR, 'F' )
INIT1 = LSAME( INIT, 'B' ) .OR. LSAME( INIT, 'L' )
INIT2 = LSAME( INIT, 'B' ) .OR. LSAME( INIT, 'S' )
C
ML = M + L
INFO = 0
IWARN = 0
IF ( .NOT.( INIT1 .OR. INIT2 .OR. LSAME( INIT, 'N' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( CHOL .OR. LSAME( ALG, 'I' ) ) ) THEN
INFO = -2
ELSEIF ( CHOL .AND. .NOT.( FULL .OR. LSAME( STOR, 'P' ) ) ) THEN
INFO = -3
ELSEIF ( INIT1 .AND. NOBR.LE.0 ) THEN
INFO = -4
ELSEIF ( M.LT.0 ) THEN
INFO = -5
ELSEIF ( L.LT.0 .OR. ( INIT1 .AND. L.EQ.0 ) ) THEN
INFO = -6
ELSEIF ( NSMP.LT.0 .OR.
$ ( INIT1 .AND. NSMP.LT.2*( ML + 1 )*NOBR - 1 ) ) THEN
INFO = -7
ELSEIF ( ( N.LT.0 .AND. .NOT.INIT1 ) .OR.
$ ( ( N.EQ.0 .OR. N.GE.NOBR ) .AND. INIT1 ) ) THEN
INFO = -8
ELSEIF ( NN.LT.0 ) THEN
INFO = -9
ELSEIF ( INIT2 .AND. ( ITMAX1.LT.0 ) ) THEN
INFO = -10
ELSEIF ( ITMAX2.LT.0 ) THEN
INFO = -11
ELSEIF ( LDU.LT.MAX( 1, NSMP ) ) THEN
INFO = -14
ELSEIF ( LDY.LT.MAX( 1, NSMP ) ) THEN
INFO = -16
ELSE
LNOL = L*NOBR - L
MNO = M*NOBR
BSN = NN*( L + 2 ) + 1
NTHS = BSN*L
NSML = NSMP*L
IF ( N.GT.0 ) THEN
LDAC = N + L
ISAD = LDAC*( N + M )
N2 = N*N
END IF
C
C Check the workspace size.
C
JWORK = 0
IF ( INIT1 ) THEN
C Workspace for IB01AD.
JWORK = 2*ML*NOBR*( 2*ML*( NOBR + 1 ) + 3 ) + L*NOBR
IF ( N.GT.0 ) THEN
C Workspace for IB01BD.
IW1 = MAX( 2*LNOL*N + 2*N, LNOL*N + N2 + 7*N, L*NOBR*N +
$ MAX( LNOL*N + 2*N + ( M + ML )*NOBR + L,
$ 2*LNOL*N + N2 + 8*N, N + 4*( MNO + N ) +
$ 1, MNO + 3*N + L ) )
IF ( M.GT.0 ) THEN
IW2 = L*NOBR*N + MNO*LDAC*( M*LDAC + 1 ) +
$ MAX( LDAC**2, 4*M*LDAC + 1 )
ELSE
IW2 = 0
END IF
JWORK = MAX( JWORK,
$ ( 2*ML*NOBR )**2 + ISAD + MAX( IW1, IW2 ) )
C Workspace for IB01CD.
IW1 = NSML*( N + 1 ) + 2*N + MAX( 2*N2, 4*N )
IW2 = N*( N + 1 ) + 2*N +
$ MAX( N*L*( N + 1 ) + 2*N2 + L*N, 4*N )
JWORK = MAX( JWORK, ISAD + 2 + N*( N + 1 + LDAC + M ) +
$ MAX( 5*N, 2, MIN( IW1, IW2 ) ) )
C Workspace for TF01MX.
JWORK = MAX( JWORK, NSML + ISAD + LDAC + 2*N + M )
C Workspace for TB01VD.
JWORK = MAX( JWORK, NSML + ISAD + N +
$ MAX( 1, N2*L + N*L + N,
$ N2 + MAX( N2 + N*MAX( N, L ) +
$ 6*N + MIN( N, L ), N*M ) ) )
END IF
END IF
C
IF ( INIT2 ) THEN
C Workspace for MD03AD (initialization of the nonlinear part).
IF ( CHOL ) THEN
IF ( FULL ) THEN
IW1 = BSN**2
ELSE
IW1 = ( BSN*( BSN + 1 ) )/2
END IF
ELSE
IW1 = 3*BSN + NSMP
END IF
JWORK = MAX( JWORK, NSML +
$ MAX( 5, NSMP + 2*BSN + NSMP*BSN +
$ MAX( 2*NN + BSN, IW1 ) ) )
IF ( N.GT.0 .AND. .NOT.INIT1 ) THEN
C Workspace for TB01VY.
JWORK = MAX( JWORK, NSML + LDAC*( 2*N + M ) + 2*N )
C Workspace for TF01MX.
IF ( M.GT.0 ) THEN
IW1 = N + M
ELSE
IW1 = 0
END IF
JWORK = MAX( JWORK, NSML + ISAD + IW1 + LDAC + N )
END IF
END IF
C
IF ( N.GE.0 ) THEN
C
C Find the number of parameters.
C
LTHS = N*( ML + 1 ) + L*M
NX = NTHS + LTHS
C
IF ( LX.LT.NX ) THEN
INFO = -18
CALL XERBLA( 'IB03AD', -INFO )
RETURN
END IF
C
C Workspace for MD03AD (whole optimization).
C
IF ( M.GT.0 ) THEN
IW1 = LDAC + M
ELSE
IW1 = L
END IF
IW1 = NSML + MAX( 2*NN, ISAD + 2*N + MAX( N*LDAC, IW1 ) )
IF ( CHOL ) THEN
IF ( FULL ) THEN
IW2 = NX**2
ELSE
IW2 = ( NX*( NX + 1 ) )/2
END IF
ELSE
IW2 = 3*NX + NSML
END IF
JWORK = MAX( JWORK,
$ 5, NSML + 2*NX + NSML*( BSN + LTHS ) +
$ MAX( IW1 + NX, NSML + IW1, IW2 ) )
END IF
C
IF ( LDWORK.LT.JWORK ) THEN
INFO = -23
DWORK(1) = JWORK
END IF
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'IB03AD', -INFO )
RETURN
ENDIF
C
C Initialize the pointers to system matrices and save the possible
C seed for random numbers generation.
C
Z = 1
AC = Z + NSML
CALL DCOPY( 4, DWORK, 1, SEED, 1 )
C
WRKOPT = 1
C
IF ( INIT1 ) THEN
C
C Initialize the linear part.
C If N < 0, the order of the system is determined by IB01AD;
C otherwise, the given order will be used.
C The workspace needed is defined for the options set above
C in the PARAMETER statements.
C Workspace: need: 2*(M+L)*NOBR*(2*(M+L)*(NOBR+1)+3) + L*NOBR;
C prefer: larger.
C Integer workspace: M+L. (If METH = 'N', (M+L)*NOBR.)
C
NS = N
IR = 1
ISV = 2*ML*NOBR
LDR = ISV
IF ( LSAME( JOBD, 'M' ) )
$ LDR = MAX( LDR, 3*MNO )
ISV = IR + LDR*ISV
JWORK = ISV + L*NOBR
C
CALL IB01AD( METH, IALG, JOBD, BATCH, CONCT, CTRL, NOBR, M, L,
$ NSMP, U, LDU, Y, LDY, N, DWORK(IR), LDR,
$ DWORK(ISV), RCOND, TOLN, IWORK, DWORK(JWORK),
$ LDWORK-JWORK+1, IWARNL, INFOL )
C
IF( INFOL.NE.0 ) THEN
INFO = 100*INFOL
RETURN
END IF
IF( IWARNL.NE.0 )
$ IWARN = 100*IWARNL
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
IRCND = 0
IF ( LSAME( METH, 'N' ) ) THEN
IRCND = 2
CALL DCOPY( IRCND, DWORK(JWORK+1), 1, RCND, 1 )
END IF
C
IF ( NS.GE.0 ) THEN
N = NS
ELSE
C
C Find the number of parameters.
C
LDAC = N + L
ISAD = LDAC*( N + M )
N2 = N*N
LTHS = N*( ML + 1 ) + L*M
NX = NTHS + LTHS
C
IF ( LX.LT.NX ) THEN
LX = NX
INFO = -18
CALL XERBLA( 'IB03AD', -INFO )
RETURN
END IF
C Workspace for IB01BD.
IW1 = MAX( 2*LNOL*N + 2*N, LNOL*N + N2 + 7*N, L*NOBR*N +
$ MAX( LNOL*N + 2*N + ( M + ML )*NOBR + L,
$ 2*LNOL*N + N2 + 8*N, N + 4*( MNO + N ) + 1,
$ MNO + 3*N + L ) )
IF ( M.GT.0 ) THEN
IW2 = L*NOBR*N + MNO*LDAC*( M*LDAC + 1 ) +
$ MAX( LDAC**2, 4*M*LDAC + 1 )
ELSE
IW2 = 0
END IF
JWORK = ISV + ISAD + MAX( IW1, IW2 )
C Workspace for IB01CD.
IW1 = NSML*( N + 1 ) + 2*N + MAX( 2*N2, 4*N )
IW2 = N*( N + 1 ) + 2*N + MAX( N*L*( N + 1 ) + 2*N2 + L*N,
$ 4*N )
JWORK = MAX( JWORK, ISAD + 2 + N*( N + 1 + LDAC + M ) +
$ MAX( 5*N, 2, MIN( IW1, IW2 ) ) )
C Workspace for TF01MX.
JWORK = MAX( JWORK, NSML + ISAD + LDAC + 2*N + M )
C Workspace for TB01VD.
JWORK = MAX( JWORK, NSML + ISAD + N +
$ MAX( 1, N2*L + N*L + N,
$ N2 + MAX( N2 + N*MAX( N, L ) +
$ 6*N + MIN( N, L ), N*M ) ) )
C Workspace for MD03AD (whole optimization).
IF ( M.GT.0 ) THEN
IW1 = LDAC + M
ELSE
IW1 = L
END IF
IW1 = NSML + MAX( 2*NN, ISAD + 2*N + MAX( N*LDAC, IW1 ) )
IF ( CHOL ) THEN
IF ( FULL ) THEN
IW2 = NX**2
ELSE
IW2 = ( NX*( NX + 1 ) )/2
END IF
ELSE
IW2 = 3*NX + NSML
END IF
JWORK = MAX( JWORK,
$ 5, NSML + 2*NX + NSML*( BSN + LTHS ) +
$ MAX( IW1 + NX, NSML + IW1, IW2 ) )
IF ( LDWORK.LT.JWORK ) THEN
INFO = -23
DWORK(1) = JWORK
CALL XERBLA( 'IB03AD', -INFO )
RETURN
END IF
END IF
C
BD = AC + LDAC*N
IX = BD + LDAC*M
IA = ISV
IB = IA + LDAC*N
IQ = IB + LDAC*M
IF ( LSAME( JOBCK, 'N' ) ) THEN
IRY = IQ
IS = IQ
IK = IQ
JWORK = IQ
ELSE
IRY = IQ + N2
IS = IRY + L*L
IK = IS + N*L
JWORK = IK + N*L
END IF
C
C The workspace needed is defined for the options set above
C in the PARAMETER statements.
C Workspace:
C need: 4*(M+L)*NOBR*(M+L)*NOBR + (N+L)*(N+M) +
C max( LDW1,LDW2 ), where,
C LDW1 >= max( 2*(L*NOBR-L)*N+2*N, (L*NOBR-L)*N+N*N+7*N,
C L*NOBR*N +
C max( (L*NOBR-L)*N+2*N + (2*M+L)*NOBR+L,
C 2*(L*NOBR-L)*N+N*N+8*N,
C N+4*(M*NOBR+N)+1, M*NOBR+3*N+L ) )
C LDW2 >= 0, if M = 0;
C LDW2 >= L*NOBR*N+M*NOBR*(N+L)*(M*(N+L)+1)+
C max( (N+L)**2, 4*M*(N+L)+1 ), if M > 0;
C prefer: larger.
C Integer workspace: MAX(M*NOBR+N,M*(N+L)).
C
CALL IB01BD( METHB, JOB, JOBCK, NOBR, N, M, L, NSMP, DWORK(IR),
$ LDR, DWORK(IA), LDAC, DWORK(IA+N), LDAC,
$ DWORK(IB), LDAC, DWORK(IB+N), LDAC, DWORK(IQ), N,
$ DWORK(IRY), L, DWORK(IS), N, DWORK(IK), N, RCOND,
$ IWORK, DWORK(JWORK), LDWORK-JWORK+1, BWORK,
$ IWARNL, INFOL )
C
IF( INFOL.EQ.-30 ) THEN
INFO = -23
DWORK(1) = DWORK(JWORK)
CALL XERBLA( 'IB03AD', -INFO )
RETURN
END IF
IF( INFOL.NE.0 ) THEN
INFO = 100*INFOL
RETURN
END IF
IF( IWARNL.NE.0 )
$ IWARN = 100*IWARNL
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
IRCNDB = 4
IF ( LSAME( JOBCK, 'K' ) )
$ IRCNDB = IRCNDB + 8
CALL DCOPY( IRCNDB, DWORK(JWORK+1), 1, RCND(IRCND+1), 1 )
IRCND = IRCND + IRCNDB
C
C Copy the system matrices to the beginning of DWORK, to save
C space, and redefine the pointers.
C
CALL DCOPY( ISAD, DWORK(IA), 1, DWORK, 1 )
IA = 1
IB = IA + LDAC*N
IX0 = IB + LDAC*M
IV = IX0 + N
C
C Compute the initial condition of the system. On normal exit,
C DWORK(i), i = JWORK+2:JWORK+1+N*N,
C DWORK(j), j = JWORK+2+N*N:JWORK+1+N*N+L*N, and
C DWORK(k), k = JWORK+2+N*N+L*N:JWORK+1+N*N+L*N+N*M,
C contain the transformed system matrices At, Ct, and Bt,
C respectively, corresponding to the real Schur form of the
C estimated system state matrix A. The transformation matrix is
C stored in DWORK(IV:IV+N*N-1).
C The workspace needed is defined for the options set above
C in the PARAMETER statements.
C Workspace:
C need: (N+L)*(N+M) + N + N*N + 2 + N*( N + M + L ) +
C max( 5*N, 2, min( LDW1, LDW2 ) ), where,
C LDW1 = NSMP*L*(N + 1) + 2*N + max( 2*N*N, 4*N),
C LDW2 = N*(N + 1) + 2*N +
C max( N*L*(N + 1) + 2*N*N + L*N, 4*N);
C prefer: larger.
C Integer workspace: N.
C
JWORK = IV + N2
CALL IB01CD( 'X needed', COMUSE, JOBXD, N, M, L, NSMP,
$ DWORK(IA), LDAC, DWORK(IB), LDAC, DWORK(IA+N),
$ LDAC, DWORK(IB+N), LDAC, U, LDU, Y, LDY,
$ DWORK(IX0), DWORK(IV), N, RCOND, IWORK,
$ DWORK(JWORK), LDWORK-JWORK+1, IWARNL, INFOL )
C
IF( INFOL.EQ.-26 ) THEN
INFO = -23
DWORK(1) = DWORK(JWORK)
CALL XERBLA( 'IB03AD', -INFO )
RETURN
END IF
IF( INFOL.EQ.1 )
$ INFOL = 10
IF( INFOL.NE.0 ) THEN
INFO = 100*INFOL
RETURN
END IF
IF( IWARNL.NE.0 )
$ IWARN = 100*IWARNL
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
IRCND = IRCND + 1
RCND(IRCND) = DWORK(JWORK+1)
C
C Now, save the system matrices and x0 in the final location.
C
IF ( IV.LT.AC ) THEN
CALL DCOPY( ISAD+N, DWORK(IA), 1, DWORK(AC), 1 )
ELSE
DO 5 J = AC + ISAD + N - 1, AC, -1
DWORK(J) = DWORK(IA+J-AC)
5 CONTINUE
END IF
C
C Compute the output of the linear part.
C Workspace: need NSMP*L + (N + L)*(N + M) + 3*N + M + L,
C if M > 0;
C NSMP*L + (N + L)*N + 2*N + L, if M = 0;
C prefer larger.
C
JWORK = IX + N
CALL DCOPY( N, DWORK(IX), 1, X(NTHS+1), 1 )
CALL TF01MX( N, M, L, NSMP, DWORK(AC), LDAC, U, LDU, X(NTHS+1),
$ DWORK(Z), NSMP, DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
C
C Convert the state-space representation to output normal form.
C Workspace:
C need: NSMP*L + (N + L)*(N + M) + N +
C MAX(1, N*N*L + N*L + N, N*N +
C MAX(N*N + N*MAX(N,L) + 6*N + MIN(N,L), N*M));
C prefer: larger.
C
CALL TB01VD( 'Apply', N, M, L, DWORK(AC), LDAC, DWORK(BD),
$ LDAC, DWORK(AC+N), LDAC, DWORK(BD+N), LDAC,
$ DWORK(IX), X(NTHS+1), LTHS, DWORK(JWORK),
$ LDWORK-JWORK+1, INFOL )
C
IF( INFOL.GT.0 ) THEN
INFO = INFOL + 3
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
END IF
C
LIPAR = 7
IW1 = 0
IW2 = 0
C
IF ( INIT2 ) THEN
C
C Initialize the nonlinear part.
C
IF ( .NOT.INIT1 ) THEN
BD = AC + LDAC*N
IX = BD + LDAC*M
C
C Convert the output normal form to state-space model.
C Workspace: need NSMP*L + (N + L)*(2*N + M) + 2*N.
C (NSMP*L locations are reserved for the output of the linear
C part.)
C
JWORK = IX + N
CALL TB01VY( 'Apply', N, M, L, X(NTHS+1), LTHS, DWORK(AC),
$ LDAC, DWORK(BD), LDAC, DWORK(AC+N), LDAC,
$ DWORK(BD+N), LDAC, DWORK(IX), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
C
C Compute the output of the linear part.
C Workspace: need NSMP*L + (N + L)*(N + M) + 3*N + M + L,
C if M > 0;
C NSMP*L + (N + L)*N + 2*N + L, if M = 0;
C prefer larger.
C
CALL TF01MX( N, M, L, NSMP, DWORK(AC), LDAC, U, LDU,
$ DWORK(IX), DWORK(Z), NSMP, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
END IF
C
C Optimize the parameters of the nonlinear part.
C Workspace:
C need NSMP*L +
C MAX( 5, NSMP + 2*BSN + NSMP*BSN +
C MAX( 2*NN + BSN, DW( sol ) ) ),
C where, if ALG = 'D',
C DW( sol ) = BSN*BSN, if STOR = 'F';
C DW( sol ) = BSN*(BSN+1)/2, if STOR = 'P';
C and DW( sol ) = 3*BSN + NSMP, if ALG = 'I';
C prefer larger.
C
JWORK = AC
WORK(1) = ZERO
CALL DCOPY( 4, WORK(1), 0, WORK(2), 1 )
C
C Set the integer parameters needed, including the number of
C neurons.
C
IPAR(1) = NSMP
IPAR(2) = L
IPAR(3) = NN
C
DO 10 I = 0, L - 1
CALL DCOPY( 4, SEED, 1, DWORK(JWORK), 1 )
IF ( CHOL ) THEN
CALL MD03AD( 'Random initialization', ALG, STOR, UPLO,
$ NF01BA, NF01BV, NSMP, BSN, ITMAX1, NPRINT,
$ IPAR, LIPAR, DWORK(Z), NSMP, Y(1,I+1), LDY,
$ X(I*BSN+1), NFEV, NJEV, TOL1, TOL1,
$ DWORK(JWORK), LDWORK-JWORK+1, IWARNL,
$ INFOL )
ELSE
CALL MD03AD( 'Random initialization', ALG, STOR, UPLO,
$ NF01BA, NF01BX, NSMP, BSN, ITMAX1, NPRINT,
$ IPAR, LIPAR, DWORK(Z), NSMP, Y(1,I+1), LDY,
$ X(I*BSN+1), NFEV, NJEV, TOL1, TOL1,
$ DWORK(JWORK), LDWORK-JWORK+1, IWARNL,
$ INFOL )
END IF
C
IF( INFOL.NE.0 ) THEN
INFO = 10*INFOL
RETURN
END IF
IF ( IWARNL.LT.0 ) THEN
INFO = INFOL
IWARN = IWARNL
GO TO 20
ELSEIF ( IWARNL.GT.0 ) THEN
IF ( IWARN.GT.100 ) THEN
IWARN = MAX( IWARN, ( IWARN/100 )*100 + 10*IWARNL )
ELSE
IWARN = MAX( IWARN, 10*IWARNL )
END IF
END IF
WORK(1) = MAX( WORK(1), DWORK(JWORK) )
WORK(2) = MAX( WORK(2), DWORK(JWORK+1) )
WORK(5) = MAX( WORK(5), DWORK(JWORK+4) )
WORK(3) = WORK(3) + DWORK(JWORK+2)
WORK(4) = WORK(4) + DWORK(JWORK+3)
IW1 = NFEV + IW1
IW2 = NJEV + IW2
10 CONTINUE
C
ENDIF
C
C Main iteration.
C Workspace: need MAX( 5, NFUN + 2*NX + NFUN*( BSN + LTHS ) +
C MAX( LDW1 + NX, NFUN + LDW1, DW( sol ) ) ),
C where NFUN = NSMP*L, and
C LDW1 = NFUN + MAX( 2*NN, (N + L)*(N + M) + 2*N +
C MAX( N*(N + L), N + M + L )),
C if M > 0,
C LDW1 = NFUN + MAX( 2*NN, (N + L)*N + 2*N +
C MAX( N*(N + L), L ) ),
C if M = 0;
C if ALG = 'D',
C DW( sol ) = NX*NX, if STOR = 'F';
C DW( sol ) = NX*(NX+1)/2, if STOR = 'P';
C and DW( sol ) = 3*NX + NFUN, if ALG = 'I',
C and DW( f ) is the workspace needed by the
C subroutine f;
C prefer larger.
C
C Set the integer parameters describing the Jacobian structure
C and the number of neurons.
C
IPAR(1) = LTHS
IPAR(2) = L
IPAR(3) = NSMP
IPAR(4) = BSN
IPAR(5) = M
IPAR(6) = N
IPAR(7) = NN
C
IF ( CHOL ) THEN
CALL MD03AD( 'Given initialization', ALG, STOR, UPLO, NF01BB,
$ NF01BU, NSML, NX, ITMAX2, NPRINT, IPAR, LIPAR,
$ U, LDU, Y, LDY, X, NFEV, NJEV, TOL2, TOL2,
$ DWORK, LDWORK, IWARNL, INFO )
ELSE
CALL MD03AD( 'Given initialization', ALG, STOR, UPLO, NF01BB,
$ NF01BW, NSML, NX, ITMAX2, NPRINT, IPAR, LIPAR,
$ U, LDU, Y, LDY, X, NFEV, NJEV, TOL2, TOL2,
$ DWORK, LDWORK, IWARNL, INFO )
END IF
C
IF( INFO.NE.0 )
$ RETURN
C
20 CONTINUE
IWORK(1) = IW1 + NFEV
IWORK(2) = IW2 + NJEV
IF ( IWARNL.LT.0 ) THEN
IWARN = IWARNL
ELSE
IWARN = IWARN + IWARNL
END IF
IF ( INIT2 )
$ CALL DCOPY( 5, WORK, 1, DWORK(6), 1 )
IF ( INIT1 ) THEN
IWORK(3) = IRCND
CALL DCOPY( IRCND, RCND, 1, DWORK(11), 1 )
ELSE
IWORK(3) = 0
END IF
RETURN
C
C *** Last line of IB03AD ***
END
|