1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
DOUBLE PRECISION FUNCTION MA02ID( TYP, NORM, N, A, LDA, QG,
$ LDQG, DWORK )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the value of the one norm, or the Frobenius norm, or
C the infinity norm, or the element of largest absolute value
C of a real skew-Hamiltonian matrix
C
C [ A G ] T T
C X = [ T ], G = -G, Q = -Q,
C [ Q A ]
C
C or of a real Hamiltonian matrix
C
C [ A G ] T T
C X = [ T ], G = G, Q = Q,
C [ Q -A ]
C
C where A, G and Q are real n-by-n matrices.
C
C Note that for this kind of matrices the infinity norm is equal
C to the one norm.
C
C FUNCTION VALUE
C
C MA02ID DOUBLE PRECISION
C The computed norm.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYP CHARACTER*1
C Specifies the type of the input matrix X:
C = 'S': X is skew-Hamiltonian;
C = 'H': X is Hamiltonian.
C
C NORM CHARACTER*1
C Specifies the value to be returned in MA02ID:
C = '1' or 'O': one norm of X;
C = 'F' or 'E': Frobenius norm of X;
C = 'I': infinity norm of X;
C = 'M': max(abs(X(i,j)).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C QG (input) DOUBLE PRECISION array, dimension (LDQG,N+1)
C On entry, the leading N-by-N+1 part of this array must
C contain in columns 1:N the lower triangular part of the
C matrix Q and in columns 2:N+1 the upper triangular part
C of the matrix G. If TYP = 'S', the parts containing the
C diagonal and the first supdiagonal of this array are not
C referenced.
C
C LDQG INTEGER
C The leading dimension of the array QG. LDQG >= MAX(1,N).
C
C Workspace
C
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C where LDWORK >= 2*N when NORM = '1', NORM = 'I' or
C NORM = 'O'; otherwise, DWORK is not referenced.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DLANHA).
C
C KEYWORDS
C
C Elementary matrix operations, Hamiltonian matrix, skew-Hamiltonian
C matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER NORM, TYP
INTEGER LDA, LDQG, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), QG(LDQG,*)
C .. Local Scalars ..
LOGICAL LSH
INTEGER I, J
DOUBLE PRECISION DSCL, DSUM, SCALE, SUM, TEMP, VALUE
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE, DLAPY2
EXTERNAL DLANGE, DLAPY2, LSAME
C .. External Subroutines ..
EXTERNAL DLASSQ
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
C
C .. Executable Statements ..
C
LSH = LSAME( TYP, 'S' )
C
IF ( N.EQ.0 ) THEN
VALUE = ZERO
C
ELSE IF ( LSAME( NORM, 'M' ) .AND. LSH ) THEN
C
C Find max(abs(A(i,j))).
C
VALUE = DLANGE( 'MaxElement', N, N, A, LDA, DWORK )
IF ( N.GT.1 ) THEN
DO 30 J = 1, N+1
DO 10 I = 1, J-2
VALUE = MAX( VALUE, ABS( QG(I,J) ) )
10 CONTINUE
DO 20 I = J+1, N
VALUE = MAX( VALUE, ABS( QG(I,J) ) )
20 CONTINUE
30 CONTINUE
END IF
C
ELSE IF ( LSAME( NORM, 'M' ) ) THEN
C
C Find max( abs( A(i,j) ), abs( QG(i,j) ) ).
C
VALUE = MAX( DLANGE( 'MaxElement', N, N, A, LDA, DWORK ),
$ DLANGE( 'MaxElement', N, N+1, QG, LDQG,
$ DWORK ) )
C
ELSE IF ( ( LSAME( NORM, 'O' ) .OR. ( NORM.EQ.'1' ) .OR.
$ LSAME( NORM, 'I' ) ) .AND. LSH ) THEN
C
C Find the column and row sums of A (in one pass).
C
VALUE = ZERO
DO 40 I = 1, N
DWORK(I) = ZERO
40 CONTINUE
C
DO 60 J = 1, N
SUM = ZERO
DO 50 I = 1, N
TEMP = ABS( A(I,J) )
SUM = SUM + TEMP
DWORK(I) = DWORK(I) + TEMP
50 CONTINUE
DWORK(N+J) = SUM
60 CONTINUE
C
C Compute the maximal absolute column sum.
C
DO 90 J = 1, N+1
DO 70 I = 1, J-2
TEMP = ABS( QG(I,J) )
DWORK(I) = DWORK(I) + TEMP
DWORK(J-1) = DWORK(J-1) + TEMP
70 CONTINUE
IF ( J.LT.N+1 ) THEN
SUM = DWORK(N+J)
DO 80 I = J+1, N
TEMP = ABS( QG(I,J) )
SUM = SUM + TEMP
DWORK(N+I) = DWORK(N+I) + TEMP
80 CONTINUE
VALUE = MAX( VALUE, SUM )
END IF
90 CONTINUE
DO 100 I = 1, N
VALUE = MAX( VALUE, DWORK(I) )
100 CONTINUE
C
ELSE IF ( LSAME( NORM, 'O' ) .OR. ( NORM.EQ.'1' ) .OR.
$ LSAME( NORM, 'I' ) ) THEN
C
C Find the column and row sums of A (in one pass).
C
VALUE = ZERO
DO 110 I = 1, N
DWORK(I) = ZERO
110 CONTINUE
C
DO 130 J = 1, N
SUM = ZERO
DO 120 I = 1, N
TEMP = ABS( A(I,J) )
SUM = SUM + TEMP
DWORK(I) = DWORK(I) + TEMP
120 CONTINUE
DWORK(N+J) = SUM
130 CONTINUE
C
C Compute the maximal absolute column sum.
C
DO 160 J = 1, N+1
DO 140 I = 1, J-2
TEMP = ABS( QG(I,J) )
DWORK(I) = DWORK(I) + TEMP
DWORK(J-1) = DWORK(J-1) + TEMP
140 CONTINUE
IF ( J.GT.1 )
$ DWORK(J-1) = DWORK(J-1) + ABS( QG(J-1,J) )
IF ( J.LT.N+1 ) THEN
SUM = DWORK(N+J) + ABS( QG(J,J) )
DO 150 I = J+1, N
TEMP = ABS( QG(I,J) )
SUM = SUM + TEMP
DWORK(N+I) = DWORK(N+I) + TEMP
150 CONTINUE
VALUE = MAX( VALUE, SUM )
END IF
160 CONTINUE
DO 170 I = 1, N
VALUE = MAX( VALUE, DWORK(I) )
170 CONTINUE
C
ELSE IF ( ( LSAME( NORM, 'F' ) .OR.
$ LSAME( NORM, 'E' ) ) .AND. LSH ) THEN
C
C Find normF(A).
C
SCALE = ZERO
SUM = ONE
DO 180 J = 1, N
CALL DLASSQ( N, A(1,J), 1, SCALE, SUM )
180 CONTINUE
C
C Add normF(G) and normF(Q).
C
DO 190 J = 1, N+1
IF ( J.GT.2 )
$ CALL DLASSQ( J-2, QG(1,J), 1, SCALE, SUM )
IF ( J.LT.N )
$ CALL DLASSQ( N-J, QG(J+1,J), 1, SCALE, SUM )
190 CONTINUE
VALUE = SQRT( TWO )*SCALE*SQRT( SUM )
ELSE IF ( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
SCALE = ZERO
SUM = ONE
DO 200 J = 1, N
CALL DLASSQ( N, A(1,J), 1, SCALE, SUM )
200 CONTINUE
DSCL = ZERO
DSUM = ONE
DO 210 J = 1, N+1
IF ( J.GT.1 ) THEN
CALL DLASSQ( J-2, QG(1,J), 1, SCALE, SUM )
CALL DLASSQ( 1, QG(J-1,J), 1, DSCL, DSUM )
END IF
IF ( J.LT.N+1 ) THEN
CALL DLASSQ( 1, QG(J,J), 1, DSCL, DSUM )
CALL DLASSQ( N-J, QG(J+1,J), 1, SCALE, SUM )
END IF
210 CONTINUE
VALUE = DLAPY2( SQRT( TWO )*SCALE*SQRT( SUM ),
$ DSCL*SQRT( DSUM ) )
END IF
C
MA02ID = VALUE
RETURN
C *** Last line of MA02ID ***
END
|