File: MB01MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (279 lines) | stat: -rw-r--r-- 8,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
      SUBROUTINE MB01MD( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
     $                   INCY )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To perform the matrix-vector operation
C
C        y := alpha*A*x + beta*y,
C
C     where alpha and beta are scalars, x and y are vectors of length
C     n and A is an n-by-n skew-symmetric matrix.
C
C     This is a modified version of the vanilla implemented BLAS
C     routine DSYMV written by Jack Dongarra, Jeremy Du Croz,
C     Sven Hammarling, and Richard Hanson.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Specifies whether the upper or lower triangular part of
C             the array A is to be referenced as follows:
C             = 'U':  only the strictly upper triangular part of A is to
C                     be referenced;
C             = 'L':  only the strictly lower triangular part of A is to
C                     be referenced.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. If alpha is zero the array A is not
C             referenced.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry with UPLO = 'U', the leading N-by-N part of this
C             array must contain the strictly upper triangular part of
C             the matrix A. The lower triangular part of this array is
C             not referenced.
C             On entry with UPLO = 'L', the leading N-by-N part of this
C             array must contain the strictly lower triangular part of
C             the matrix A. The upper triangular part of this array is
C             not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N)
C
C     X       (input) DOUBLE PRECISION array, dimension
C             ( 1 + ( N - 1 )*abs( INCX ) ).
C             On entry, elements 1, INCX+1, .., ( N - 1 )*INCX + 1 of
C             this array must contain the elements of the vector X.
C
C     INCX    (input) INTEGER
C             The increment for the elements of X. IF INCX < 0 then the
C             elements of X are accessed in reversed order.  INCX <> 0.
C
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. If beta is zero then Y need not be set on
C             input.
C
C     Y       (input/output) DOUBLE PRECISION array, dimension
C             ( 1 + ( N - 1 )*abs( INCY ) ).
C             On entry, elements 1, INCY+1, .., ( N - 1 )*INCY + 1 of
C             this array must contain the elements of the vector Y.
C             On exit, elements 1, INCY+1, .., ( N - 1 )*INCY + 1 of
C             this array contain the updated elements of the vector Y.
C
C     INCY    (input) INTEGER
C             The increment for the elements of Y. IF INCY < 0 then the
C             elements of Y are accessed in reversed order.  INCY <> 0.
C
C     NUMERICAL ASPECTS
C
C     Though being almost identical with the vanilla implementation
C     of the BLAS routine DSYMV the performance of this routine could
C     be significantly lower in the case of vendor supplied, highly
C     optimized BLAS.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, May 2008 (SLICOT version of the HAPACK routine DSKMV).
C
C     KEYWORDS
C
C     Elementary matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA, BETA
      INTEGER            INCX, INCY, LDA, N
      CHARACTER          UPLO
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), X(*), Y(*)
C     .. Local Scalars ..
      DOUBLE PRECISION   TEMP1, TEMP2
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO = 0
      IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = 1
      ELSE IF ( N.LT.0 )THEN
         INFO = 2
      ELSE IF ( LDA.LT.MAX( 1, N ) )THEN
         INFO = 5
      ELSE IF ( INCX.EQ.0 )THEN
         INFO = 7
      ELSE IF ( INCY.EQ.0 )THEN
         INFO = 10
      END IF
      IF ( INFO.NE.0 )THEN
         CALL XERBLA( 'MB01MD', INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
C
C     Set up the start points in  X  and  Y.
C
      IF ( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( N - 1 )*INCX
      END IF
      IF ( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( N - 1 )*INCY
      END IF
C
C     Start the operations. In this version the elements of A are
C     accessed sequentially with one pass through the triangular part
C     of A.
C
C     First form  y := beta*y.
C
      IF ( BETA.NE.ONE )THEN
         IF ( INCY.EQ.1 )THEN
            IF ( BETA.EQ.ZERO )THEN
               DO 10 I = 1, N
                  Y(I) = ZERO
   10          CONTINUE
            ELSE
               DO 20 I = 1, N
                  Y(I) = BETA*Y(I)
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF ( BETA.EQ.ZERO )THEN
               DO 30 I = 1, N
                  Y(IY) = ZERO
                  IY = IY + INCY
   30          CONTINUE
            ELSE
               DO 40 I = 1, N
                  Y(IY) = BETA*Y(IY)
                  IY = IY + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
C
C     Quick return if possible.
C
      IF ( ALPHA.EQ.ZERO )
     $   RETURN
      IF ( LSAME( UPLO, 'U' ) )THEN
C
C        Form y when A is stored in upper triangle.
C
         IF ( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 60 J = 2, N
               TEMP1 = ALPHA*X(J)
               TEMP2 = ZERO
               DO 50, I = 1, J - 1
                  Y(I)  = Y(I)  + TEMP1*A(I,J)
                  TEMP2 = TEMP2 + A(I,J)*X(I)
   50          CONTINUE
               Y(J) = Y(J) - ALPHA*TEMP2
   60       CONTINUE
         ELSE
            JX = KX + INCX
            JY = KY + INCY
            DO 80 J = 2, N
               TEMP1 = ALPHA*X(JX)
               TEMP2 = ZERO
               IX    = KX
               IY    = KY
               DO 70 I = 1, J - 1
                  Y(IY) = Y(IY) + TEMP1*A(I,J)
                  TEMP2 = TEMP2 + A(I,J)*X(IX)
                  IX    = IX + INCX
                  IY    = IY + INCY
   70          CONTINUE
               Y(JY) = Y(JY) - ALPHA*TEMP2
               JX = JX + INCX
               JY = JY + INCY
   80       CONTINUE
         END IF
      ELSE
C
C        Form y when A is stored in lower triangle.
C
         IF ( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) )THEN
            DO 100 J = 1, N - 1
               TEMP1 = ALPHA*X(J)
               TEMP2 = ZERO
               DO 90 I = J + 1, N
                  Y(I)  = Y(I)  + TEMP1*A(I,J)
                  TEMP2 = TEMP2 + A(I,J)*X(I)
   90          CONTINUE
               Y(J) = Y(J) - ALPHA*TEMP2
  100       CONTINUE
         ELSE
            JX = KX
            JY = KY
            DO 120 J = 1, N - 1
               TEMP1 = ALPHA*X(JX)
               TEMP2 = ZERO
               IX = JX
               IY = JY
               DO 110 I = J + 1, N
                  IX = IX + INCX
                  IY = IY + INCY
                  Y(IY ) = Y(IY) + TEMP1*A(I,J)
                  TEMP2  = TEMP2 + A(I,J)*X(IX)
  110          CONTINUE
               Y(JY) = Y(JY) - ALPHA*TEMP2
               JX = JX + INCX
               JY = JY + INCY
  120       CONTINUE
         END IF
      END IF
C *** Last line of MB01MD ***
      END