1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
SUBROUTINE MB01RU( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
$ X, LDX, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrix formula
C _
C R = alpha*R + beta*op( A )*X*op( A )',
C _
C where alpha and beta are scalars, R, X, and R are symmetric
C matrices, A is a general matrix, and op( A ) is one of
C
C op( A ) = A or op( A ) = A'.
C
C The result is overwritten on R.
C
C ARGUMENTS
C
C Mode Parameters
C
C UPLO CHARACTER*1
C Specifies which triangles of the symmetric matrices R
C and X are given as follows:
C = 'U': the upper triangular part is given;
C = 'L': the lower triangular part is given.
C
C TRANS CHARACTER*1
C Specifies the form of op( A ) to be used in the matrix
C multiplication as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C Input/Output Parameters
C
C M (input) INTEGER _
C The order of the matrices R and R and the number of rows
C of the matrix op( A ). M >= 0.
C
C N (input) INTEGER
C The order of the matrix X and the number of columns of the
C the matrix op( A ). N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then R need not be
C set before entry, except when R is identified with X in
C the call.
C
C BETA (input) DOUBLE PRECISION
C The scalar beta. When beta is zero then A and X are not
C referenced.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C On entry with UPLO = 'U', the leading M-by-M upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix R.
C On entry with UPLO = 'L', the leading M-by-M lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix R.
C On exit, the leading M-by-M upper triangular part (if
C UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C this array contains the corresponding triangular part of
C _
C the computed matrix R.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,M).
C
C A (input) DOUBLE PRECISION array, dimension (LDA,k)
C where k is N when TRANS = 'N' and is M when TRANS = 'T' or
C TRANS = 'C'.
C On entry with TRANS = 'N', the leading M-by-N part of this
C array must contain the matrix A.
C On entry with TRANS = 'T' or TRANS = 'C', the leading
C N-by-M part of this array must contain the matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,k),
C where k is M when TRANS = 'N' and is N when TRANS = 'T' or
C TRANS = 'C'.
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, if UPLO = 'U', the leading N-by-N upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix X and the strictly
C lower triangular part of the array is not referenced.
C On entry, if UPLO = 'L', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix X and the strictly
C upper triangular part of the array is not referenced.
C The diagonal elements of this array are modified
C internally, but are restored on exit.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C This array is not referenced when beta = 0, or M*N = 0.
C
C LDWORK The length of the array DWORK.
C LDWORK >= M*N, if beta <> 0;
C LDWORK >= 0, if beta = 0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -k, the k-th argument had an illegal
C value.
C
C METHOD
C
C The matrix expression is efficiently evaluated taking the symmetry
C into account. Specifically, let X = T + T', with T an upper or
C lower triangular matrix, defined by
C
C T = triu( X ) - (1/2)*diag( X ), if UPLO = 'U',
C T = tril( X ) - (1/2)*diag( X ), if UPLO = 'L',
C
C where triu, tril, and diag denote the upper triangular part, lower
C triangular part, and diagonal part of X, respectively. Then,
C
C A*X*A' = ( A*T )*A' + A*( A*T )', for TRANS = 'N',
C A'*X*A = A'*( T*A ) + ( T*A )'*A, for TRANS = 'T', or 'C',
C
C which involve BLAS 3 operations (DTRMM and DSYR2K).
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately
C
C 2 2
C 3/2 x M x N + 1/2 x M
C
C operations.
C
C FURTHER COMMENTS
C
C This is a simpler version for MB01RD.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Jan. 1999.
C
C REVISIONS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, March 2004.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
C .. Scalar Arguments ..
CHARACTER TRANS, UPLO
INTEGER INFO, LDA, LDR, LDWORK, LDX, M, N
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)
C .. Local Scalars ..
LOGICAL LTRANS, LUPLO
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLACPY, DLASCL, DLASET, DSCAL, DSYR2K, DTRMM,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LUPLO = LSAME( UPLO, 'U' )
LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
IF( ( .NOT.LUPLO ).AND.( .NOT.LSAME( UPLO, 'L' ) ) )THEN
INFO = -1
ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
INFO = -8
ELSE IF( LDA.LT.1 .OR. ( LTRANS .AND. LDA.LT.N ) .OR.
$ ( .NOT.LTRANS .AND. LDA.LT.M ) ) THEN
INFO = -10
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( ( BETA.NE.ZERO .AND. LDWORK.LT.M*N )
$ .OR.( BETA.EQ.ZERO .AND. LDWORK.LT.0 ) ) THEN
INFO = -14
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01RU', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( M.EQ.0 )
$ RETURN
C
IF ( BETA.EQ.ZERO .OR. N.EQ.0 ) THEN
IF ( ALPHA.EQ.ZERO ) THEN
C
C Special case alpha = 0.
C
CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
ELSE
C
C Special case beta = 0 or N = 0.
C
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
END IF
RETURN
END IF
C
C General case: beta <> 0.
C Compute W = op( A )*T or W = T*op( A ) in DWORK, and apply the
C updating formula (see METHOD section).
C Workspace: need M*N.
C
CALL DSCAL( N, HALF, X, LDX+1 )
C
IF( LTRANS ) THEN
C
CALL DLACPY( 'Full', N, M, A, LDA, DWORK, N )
CALL DTRMM( 'Left', UPLO, 'NoTranspose', 'Non-unit', N, M,
$ ONE, X, LDX, DWORK, N )
CALL DSYR2K( UPLO, TRANS, M, N, BETA, DWORK, N, A, LDA, ALPHA,
$ R, LDR )
C
ELSE
C
CALL DLACPY( 'Full', M, N, A, LDA, DWORK, M )
CALL DTRMM( 'Right', UPLO, 'NoTranspose', 'Non-unit', M, N,
$ ONE, X, LDX, DWORK, M )
CALL DSYR2K( UPLO, TRANS, M, N, BETA, DWORK, M, A, LDA, ALPHA,
$ R, LDR )
C
END IF
C
CALL DSCAL( N, TWO, X, LDX+1 )
C
RETURN
C *** Last line of MB01RU ***
END
|