1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
SUBROUTINE MB01RX( SIDE, UPLO, TRANS, M, N, ALPHA, BETA, R, LDR,
$ A, LDA, B, LDB, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute either the upper or lower triangular part of one of the
C matrix formulas
C _
C R = alpha*R + beta*op( A )*B, (1)
C _
C R = alpha*R + beta*B*op( A ), (2)
C _
C where alpha and beta are scalars, R and R are m-by-m matrices,
C op( A ) and B are m-by-n and n-by-m matrices for (1), or n-by-m
C and m-by-n matrices for (2), respectively, and op( A ) is one of
C
C op( A ) = A or op( A ) = A', the transpose of A.
C
C The result is overwritten on R.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specifies whether the matrix A appears on the left or
C right in the matrix product as follows:
C _
C = 'L': R = alpha*R + beta*op( A )*B;
C _
C = 'R': R = alpha*R + beta*B*op( A ).
C
C UPLO CHARACTER*1 _
C Specifies which triangles of the matrices R and R are
C computed and given, respectively, as follows:
C = 'U': the upper triangular part;
C = 'L': the lower triangular part.
C
C TRANS CHARACTER*1
C Specifies the form of op( A ) to be used in the matrix
C multiplication as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C Input/Output Parameters
C
C M (input) INTEGER _
C The order of the matrices R and R, the number of rows of
C the matrix op( A ) and the number of columns of the
C matrix B, for SIDE = 'L', or the number of rows of the
C matrix B and the number of columns of the matrix op( A ),
C for SIDE = 'R'. M >= 0.
C
C N (input) INTEGER
C The number of rows of the matrix B and the number of
C columns of the matrix op( A ), for SIDE = 'L', or the
C number of rows of the matrix op( A ) and the number of
C columns of the matrix B, for SIDE = 'R'. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then R need not be
C set before entry.
C
C BETA (input) DOUBLE PRECISION
C The scalar beta. When beta is zero then A and B are not
C referenced.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C On entry with UPLO = 'U', the leading M-by-M upper
C triangular part of this array must contain the upper
C triangular part of the matrix R; the strictly lower
C triangular part of the array is not referenced.
C On entry with UPLO = 'L', the leading M-by-M lower
C triangular part of this array must contain the lower
C triangular part of the matrix R; the strictly upper
C triangular part of the array is not referenced.
C On exit, the leading M-by-M upper triangular part (if
C UPLO = 'U'), or lower triangular part (if UPLO = 'L') of
C this array contains the corresponding triangular part of
C _
C the computed matrix R.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,M).
C
C A (input) DOUBLE PRECISION array, dimension (LDA,k), where
C k = N when SIDE = 'L', and TRANS = 'N', or
C SIDE = 'R', and TRANS = 'T';
C k = M when SIDE = 'R', and TRANS = 'N', or
C SIDE = 'L', and TRANS = 'T'.
C On entry, if SIDE = 'L', and TRANS = 'N', or
C SIDE = 'R', and TRANS = 'T',
C the leading M-by-N part of this array must contain the
C matrix A.
C On entry, if SIDE = 'R', and TRANS = 'N', or
C SIDE = 'L', and TRANS = 'T',
C the leading N-by-M part of this array must contain the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,l), where
C l = M when SIDE = 'L', and TRANS = 'N', or
C SIDE = 'R', and TRANS = 'T';
C l = N when SIDE = 'R', and TRANS = 'N', or
C SIDE = 'L', and TRANS = 'T'.
C
C B (input) DOUBLE PRECISION array, dimension (LDB,p), where
C p = M when SIDE = 'L';
C p = N when SIDE = 'R'.
C On entry, the leading N-by-M part, if SIDE = 'L', or
C M-by-N part, if SIDE = 'R', of this array must contain the
C matrix B.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,N), if SIDE = 'L';
C LDB >= MAX(1,M), if SIDE = 'R'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix expression is evaluated taking the triangular
C structure into account. BLAS 2 operations are used. A block
C algorithm can be easily constructed; it can use BLAS 3 GEMM
C operations for most computations, and calls of this BLAS 2
C algorithm for computing the triangles.
C
C FURTHER COMMENTS
C
C The main application of this routine is when the result should
C be a symmetric matrix, e.g., when B = X*op( A )', for (1), or
C B = op( A )'*X, for (2), where B is already available and X = X'.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1999.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDB, LDR, M, N
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), R(LDR,*)
C .. Local Scalars ..
LOGICAL LSIDE, LTRANS, LUPLO
INTEGER J
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMV, DLASCL, DLASET, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LSIDE = LSAME( SIDE, 'L' )
LUPLO = LSAME( UPLO, 'U' )
LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
IF( ( .NOT.LSIDE ).AND.( .NOT.LSAME( SIDE, 'R' ) ) )THEN
INFO = -1
ELSE IF( ( .NOT.LUPLO ).AND.( .NOT.LSAME( UPLO, 'L' ) ) )THEN
INFO = -2
ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( LDA.LT.1 .OR.
$ ( ( ( LSIDE .AND. .NOT.LTRANS ) .OR.
$ ( .NOT.LSIDE .AND. LTRANS ) ) .AND. LDA.LT.M ) .OR.
$ ( ( ( LSIDE .AND. LTRANS ) .OR.
$ ( .NOT.LSIDE .AND. .NOT.LTRANS ) ) .AND. LDA.LT.N ) ) THEN
INFO = -11
ELSE IF( LDB.LT.1 .OR.
$ ( LSIDE .AND. LDB.LT.N ) .OR.
$ ( .NOT.LSIDE .AND. LDB.LT.M ) ) THEN
INFO = -13
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01RX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( M.EQ.0 )
$ RETURN
C
IF ( BETA.EQ.ZERO .OR. N.EQ.0 ) THEN
IF ( ALPHA.EQ.ZERO ) THEN
C
C Special case alpha = 0.
C
CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
ELSE
C
C Special case beta = 0 or N = 0.
C
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
END IF
RETURN
END IF
C
C General case: beta <> 0.
C Compute the required triangle of (1) or (2) using BLAS 2
C operations.
C
IF( LSIDE ) THEN
IF( LUPLO ) THEN
IF ( LTRANS ) THEN
DO 10 J = 1, M
CALL DGEMV( TRANS, N, J, BETA, A, LDA, B(1,J), 1,
$ ALPHA, R(1,J), 1 )
10 CONTINUE
ELSE
DO 20 J = 1, M
CALL DGEMV( TRANS, J, N, BETA, A, LDA, B(1,J), 1,
$ ALPHA, R(1,J), 1 )
20 CONTINUE
END IF
ELSE
IF ( LTRANS ) THEN
DO 30 J = 1, M
CALL DGEMV( TRANS, N, M-J+1, BETA, A(1,J), LDA,
$ B(1,J), 1, ALPHA, R(J,J), 1 )
30 CONTINUE
ELSE
DO 40 J = 1, M
CALL DGEMV( TRANS, M-J+1, N, BETA, A(J,1), LDA,
$ B(1,J), 1, ALPHA, R(J,J), 1 )
40 CONTINUE
END IF
END IF
C
ELSE
IF( LUPLO ) THEN
IF( LTRANS ) THEN
DO 50 J = 1, M
CALL DGEMV( 'NoTranspose', J, N, BETA, B, LDB, A(J,1),
$ LDA, ALPHA, R(1,J), 1 )
50 CONTINUE
ELSE
DO 60 J = 1, M
CALL DGEMV( 'NoTranspose', J, N, BETA, B, LDB, A(1,J),
$ 1, ALPHA, R(1,J), 1 )
60 CONTINUE
END IF
ELSE
IF( LTRANS ) THEN
DO 70 J = 1, M
CALL DGEMV( 'NoTranspose', M-J+1, N, BETA, B(J,1),
$ LDB, A(J,1), LDA, ALPHA, R(J,J), 1 )
70 CONTINUE
ELSE
DO 80 J = 1, M
CALL DGEMV( 'NoTranspose', M-J+1, N, BETA, B(J,1),
$ LDB, A(1,J), 1, ALPHA, R(J,J), 1 )
80 CONTINUE
END IF
END IF
END IF
C
RETURN
C *** Last line of MB01RX ***
END
|