1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
SUBROUTINE MB01UD( SIDE, TRANS, M, N, ALPHA, H, LDH, A, LDA, B,
$ LDB, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute one of the matrix products
C
C B = alpha*op( H ) * A, or B = alpha*A * op( H ),
C
C where alpha is a scalar, A and B are m-by-n matrices, H is an
C upper Hessenberg matrix, and op( H ) is one of
C
C op( H ) = H or op( H ) = H', the transpose of H.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specifies whether the Hessenberg matrix H appears on the
C left or right in the matrix product as follows:
C = 'L': B = alpha*op( H ) * A;
C = 'R': B = alpha*A * op( H ).
C
C TRANS CHARACTER*1
C Specifies the form of op( H ) to be used in the matrix
C multiplication as follows:
C = 'N': op( H ) = H;
C = 'T': op( H ) = H';
C = 'C': op( H ) = H'.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrices A and B. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrices A and B. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then H is not
C referenced and A need not be set before entry.
C
C H (input) DOUBLE PRECISION array, dimension (LDH,k)
C where k is M when SIDE = 'L' and is N when SIDE = 'R'.
C On entry with SIDE = 'L', the leading M-by-M upper
C Hessenberg part of this array must contain the upper
C Hessenberg matrix H.
C On entry with SIDE = 'R', the leading N-by-N upper
C Hessenberg part of this array must contain the upper
C Hessenberg matrix H.
C The elements below the subdiagonal are not referenced,
C except possibly for those in the first column, which
C could be overwritten, but are restored on exit.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= max(1,k),
C where k is M when SIDE = 'L' and is N when SIDE = 'R'.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading M-by-N part of this array must contain the
C matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C B (output) DOUBLE PRECISION array, dimension (LDB,N)
C The leading M-by-N part of this array contains the
C computed product.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,M).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The required matrix product is computed in two steps. In the first
C step, the upper triangle of H is used; in the second step, the
C contribution of the subdiagonal is added. A fast BLAS 3 DTRMM
C operation is used in the first step.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, January 1999.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, LDA, LDB, LDH, M, N
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), H(LDH,*)
C .. Local Scalars ..
LOGICAL LSIDE, LTRANS
INTEGER I, J
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DLACPY, DLASET, DSWAP, DTRMM, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LSIDE = LSAME( SIDE, 'L' )
LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
IF( ( .NOT.LSIDE ).AND.( .NOT.LSAME( SIDE, 'R' ) ) )THEN
INFO = -1
ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDH.LT.1 .OR. ( LSIDE .AND. LDH.LT.M ) .OR.
$ ( .NOT.LSIDE .AND. LDH.LT.N ) ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01UD', -INFO )
RETURN
END IF
C
C Quick return, if possible.
C
IF ( MIN( M, N ).EQ.0 )
$ RETURN
C
IF( ALPHA.EQ.ZERO ) THEN
C
C Set B to zero and return.
C
CALL DLASET( 'Full', M, N, ZERO, ZERO, B, LDB )
RETURN
END IF
C
C Copy A in B and compute one of the matrix products
C B = alpha*op( triu( H ) ) * A, or
C B = alpha*A * op( triu( H ) ),
C involving the upper triangle of H.
C
CALL DLACPY( 'Full', M, N, A, LDA, B, LDB )
CALL DTRMM( SIDE, 'Upper', TRANS, 'Non-unit', M, N, ALPHA, H,
$ LDH, B, LDB )
C
C Add the contribution of the subdiagonal of H.
C If SIDE = 'L', the subdiagonal of H is swapped with the
C corresponding elements in the first column of H, and the
C calculations are organized for column operations.
C
IF( LSIDE ) THEN
IF( M.GT.2 )
$ CALL DSWAP( M-2, H( 3, 2 ), LDH+1, H( 3, 1 ), 1 )
IF( LTRANS ) THEN
DO 20 J = 1, N
DO 10 I = 1, M - 1
B( I, J ) = B( I, J ) + ALPHA*H( I+1, 1 )*A( I+1, J )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = 2, M
B( I, J ) = B( I, J ) + ALPHA*H( I, 1 )*A( I-1, J )
30 CONTINUE
40 CONTINUE
END IF
IF( M.GT.2 )
$ CALL DSWAP( M-2, H( 3, 2 ), LDH+1, H( 3, 1 ), 1 )
C
ELSE
C
IF( LTRANS ) THEN
DO 50 J = 1, N - 1
IF ( H( J+1, J ).NE.ZERO )
$ CALL DAXPY( M, ALPHA*H( J+1, J ), A( 1, J ), 1,
$ B( 1, J+1 ), 1 )
50 CONTINUE
ELSE
DO 60 J = 1, N - 1
IF ( H( J+1, J ).NE.ZERO )
$ CALL DAXPY( M, ALPHA*H( J+1, J ), A( 1, J+1 ), 1,
$ B( 1, J ), 1 )
60 CONTINUE
END IF
END IF
C
RETURN
C *** Last line of MB01UD ***
END
|