1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
SUBROUTINE MB01UX( SIDE, UPLO, TRANS, M, N, ALPHA, T, LDT, A, LDA,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute one of the matrix products
C
C A : = alpha*op( T ) * A, or A : = alpha*A * op( T ),
C
C where alpha is a scalar, A is an m-by-n matrix, T is a quasi-
C triangular matrix, and op( T ) is one of
C
C op( T ) = T or op( T ) = T', the transpose of T.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specifies whether the upper quasi-triangular matrix H
C appears on the left or right in the matrix product as
C follows:
C = 'L': A := alpha*op( T ) * A;
C = 'R': A := alpha*A * op( T ).
C
C UPLO CHARACTER*1.
C Specifies whether the matrix T is an upper or lower
C quasi-triangular matrix as follows:
C = 'U': T is an upper quasi-triangular matrix;
C = 'L': T is a lower quasi-triangular matrix.
C
C TRANS CHARACTER*1
C Specifies the form of op( T ) to be used in the matrix
C multiplication as follows:
C = 'N': op( T ) = T;
C = 'T': op( T ) = T';
C = 'C': op( T ) = T'.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then T is not
C referenced and A need not be set before entry.
C
C T (input) DOUBLE PRECISION array, dimension (LDT,k)
C where k is M when SIDE = 'L' and is N when SIDE = 'R'.
C On entry with UPLO = 'U', the leading k-by-k upper
C Hessenberg part of this array must contain the upper
C quasi-triangular matrix T. The elements below the
C subdiagonal are not referenced.
C On entry with UPLO = 'L', the leading k-by-k lower
C Hessenberg part of this array must contain the lower
C quasi-triangular matrix T. The elements above the
C supdiagonal are not referenced.
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= max(1,k),
C where k is M when SIDE = 'L' and is N when SIDE = 'R'.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading M-by-N part of this array must
C contain the matrix A.
C On exit, the leading M-by-N part of this array contains
C the computed product.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 and ALPHA<>0, DWORK(1) returns the
C optimal value of LDWORK.
C On exit, if INFO = -12, DWORK(1) returns the minimum
C value of LDWORK.
C This array is not referenced when alpha = 0.
C
C LDWORK The length of the array DWORK.
C LDWORK >= 1, if alpha = 0 or MIN(M,N) = 0;
C LDWORK >= 2*(M-1), if SIDE = 'L';
C LDWORK >= 2*(N-1), if SIDE = 'R'.
C For maximal efficiency LDWORK should be at least
C NOFF*N + M - 1, if SIDE = 'L';
C NOFF*M + N - 1, if SIDE = 'R';
C where NOFF is the number of nonzero elements on the
C subdiagonal (if UPLO = 'U') or supdiagonal (if UPLO = 'L')
C of T.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The technique used in this routine is similiar to the technique
C used in the SLICOT [1] subroutine MB01UW developed by Vasile Sima.
C The required matrix product is computed in two steps. In the first
C step, the triangle of T specified by UPLO is used; in the second
C step, the contribution of the sub-/supdiagonal is added. If the
C workspace can accommodate parts of A, a fast BLAS 3 DTRMM
C operation is used in the first step.
C
C REFERENCES
C
C [1] Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
C Varga, A.
C SLICOT - A subroutine library in systems and control theory.
C In: Applied and computational control, signals, and circuits,
C Vol. 1, pp. 499-539, Birkhauser, Boston, 1999.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, May 2008 (SLICOT version of the HAPACK routine DTRQML).
C
C KEYWORDS
C
C Elementary matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDT, LDWORK, M, N
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), T(LDT,*)
C .. Local Scalars ..
LOGICAL LSIDE, LTRAN, LUP
CHARACTER ATRAN
INTEGER I, IERR, J, K, NOFF, PDW, PSAV, WRKMIN, WRKOPT,
$ XDIF
DOUBLE PRECISION TEMP
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DLASCL, DLASET, DTRMM, DTRMV,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C
C .. Executable Statements ..
C
C Decode and test the input scalar arguments.
C
INFO = 0
LSIDE = LSAME( SIDE, 'L' )
LUP = LSAME( UPLO, 'U' )
LTRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
IF ( LSIDE ) THEN
K = M
ELSE
K = N
END IF
WRKMIN = 2*( K - 1 )
C
IF ( ( .NOT.LSIDE ).AND.( .NOT.LSAME( SIDE, 'R' ) ) ) THEN
INFO = -1
ELSE IF ( ( .NOT.LUP ).AND.( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
INFO = -2
ELSE IF ( ( .NOT.LTRAN ).AND.( .NOT.LSAME( TRANS, 'N' ) ) ) THEN
INFO = -3
ELSE IF ( M.LT.0 ) THEN
INFO = -4
ELSE IF ( N.LT.0 ) THEN
INFO = -5
ELSE IF ( LDT.LT.MAX( 1, K ) ) THEN
INFO = -8
ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF ( LDWORK.LT.0 .OR.
$ ( ALPHA.NE.ZERO .AND. MIN( M, N ).GT.0 .AND.
$ LDWORK.LT.WRKMIN ) ) THEN
DWORK(1) = DBLE( WRKMIN )
INFO = -12
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01UX', -INFO )
RETURN
END IF
C
C Quick return, if possible.
C
IF ( MIN( M, N ).EQ.0 )
$ RETURN
C
IF ( ALPHA.EQ.ZERO ) THEN
C
C Set A to zero and return.
C
CALL DLASET( 'Full', M, N, ZERO, ZERO, A, LDA )
RETURN
END IF
C
C Save and count off-diagonal entries of T.
C
IF ( LUP ) THEN
CALL DCOPY( K-1, T(2,1), LDT+1, DWORK, 1 )
ELSE
CALL DCOPY( K-1, T(1,2), LDT+1, DWORK, 1 )
END IF
NOFF = 0
DO 5 I = 1, K-1
IF ( DWORK(I).NE.ZERO )
$ NOFF = NOFF + 1
5 CONTINUE
C
C Compute optimal workspace.
C
IF ( LSIDE ) THEN
WRKOPT = NOFF*N + M - 1
ELSE
WRKOPT = NOFF*M + N - 1
END IF
PSAV = K
IF ( .NOT.LTRAN ) THEN
XDIF = 0
ELSE
XDIF = 1
END IF
IF ( .NOT.LUP )
$ XDIF = 1 - XDIF
IF ( .NOT.LSIDE )
$ XDIF = 1 - XDIF
C
IF ( LDWORK.GE.WRKOPT ) THEN
C
C Enough workspace for a fast BLAS 3 calculation.
C Save relevant parts of A in the workspace and compute one of
C the matrix products
C A : = alpha*op( triu( T ) ) * A, or
C A : = alpha*A * op( triu( T ) ),
C involving the upper/lower triangle of T.
C
PDW = PSAV
IF ( LSIDE ) THEN
DO 20 J = 1, N
DO 10 I = 1, M-1
IF ( DWORK(I).NE.ZERO ) THEN
DWORK(PDW) = A(I+XDIF,J)
PDW = PDW + 1
END IF
10 CONTINUE
20 CONTINUE
ELSE
DO 30 J = 1, N-1
IF ( DWORK(J).NE.ZERO ) THEN
CALL DCOPY( M, A(1,J+XDIF), 1, DWORK(PDW), 1 )
PDW = PDW + M
END IF
30 CONTINUE
END IF
CALL DTRMM( SIDE, UPLO, TRANS, 'Non-unit', M, N, ALPHA, T,
$ LDT, A, LDA )
C
C Add the contribution of the offdiagonal of T.
C
PDW = PSAV
XDIF = 1 - XDIF
IF( LSIDE ) THEN
DO 50 J = 1, N
DO 40 I = 1, M-1
TEMP = DWORK(I)
IF ( TEMP.NE.ZERO ) THEN
A(I+XDIF,J) = A(I+XDIF,J) + ALPHA * TEMP *
$ DWORK(PDW)
PDW = PDW + 1
END IF
40 CONTINUE
50 CONTINUE
ELSE
DO 60 J = 1, N-1
TEMP = DWORK(J)*ALPHA
IF ( TEMP.NE.ZERO ) THEN
CALL DAXPY( M, TEMP, DWORK(PDW), 1, A(1,J+XDIF), 1 )
PDW = PDW + M
END IF
60 CONTINUE
END IF
ELSE
C
C Use a BLAS 2 calculation.
C
IF ( LSIDE ) THEN
DO 80 J = 1, N
C
C Compute the contribution of the offdiagonal of T to
C the j-th column of the product.
C
DO 70 I = 1, M - 1
DWORK(PSAV+I-1) = DWORK(I)*A(I+XDIF,J)
70 CONTINUE
C
C Multiply the triangle of T by the j-th column of A,
C and add to the above result.
C
CALL DTRMV( UPLO, TRANS, 'Non-unit', M, T, LDT, A(1,J),
$ 1 )
CALL DAXPY( M-1, ONE, DWORK(PSAV), 1, A(2-XDIF,J), 1 )
80 CONTINUE
ELSE
IF ( LTRAN ) THEN
ATRAN = 'N'
ELSE
ATRAN = 'T'
END IF
DO 100 I = 1, M
C
C Compute the contribution of the offdiagonal of T to
C the i-th row of the product.
C
DO 90 J = 1, N - 1
DWORK(PSAV+J-1) = A(I,J+XDIF)*DWORK(J)
90 CONTINUE
C
C Multiply the i-th row of A by the triangle of T,
C and add to the above result.
C
CALL DTRMV( UPLO, ATRAN, 'Non-unit', N, T, LDT, A(I,1),
$ LDA )
CALL DAXPY( N-1, ONE, DWORK(PSAV), 1, A(I,2-XDIF), LDA )
100 CONTINUE
END IF
C
C Scale the result by alpha.
C
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( 'General', 0, 0, ONE, ALPHA, M, N, A, LDA,
$ IERR )
END IF
DWORK(1) = DBLE( MAX( WRKMIN, WRKOPT ) )
RETURN
C *** Last line of MB01UX ***
END
|