1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
SUBROUTINE MB01WD( DICO, UPLO, TRANS, HESS, N, ALPHA, BETA, R,
$ LDR, A, LDA, T, LDT, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrix formula
C _
C R = alpha*( op( A )'*op( T )'*op( T ) + op( T )'*op( T )*op( A ) )
C + beta*R, (1)
C
C if DICO = 'C', or
C _
C R = alpha*( op( A )'*op( T )'*op( T )*op( A ) - op( T )'*op( T ))
C + beta*R, (2)
C _
C if DICO = 'D', where alpha and beta are scalars, R, and R are
C symmetric matrices, T is a triangular matrix, A is a general or
C Hessenberg matrix, and op( M ) is one of
C
C op( M ) = M or op( M ) = M'.
C
C The result is overwritten on R.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the formula to be evaluated, as follows:
C = 'C': formula (1), "continuous-time" case;
C = 'D': formula (2), "discrete-time" case.
C
C UPLO CHARACTER*1
C Specifies which triangles of the symmetric matrix R and
C triangular matrix T are given, as follows:
C = 'U': the upper triangular parts of R and T are given;
C = 'L': the lower triangular parts of R and T are given;
C
C TRANS CHARACTER*1
C Specifies the form of op( M ) to be used, as follows:
C = 'N': op( M ) = M;
C = 'T': op( M ) = M';
C = 'C': op( M ) = M'.
C
C HESS CHARACTER*1
C Specifies the form of the matrix A, as follows:
C = 'F': matrix A is full;
C = 'H': matrix A is Hessenberg (or Schur), either upper
C (if UPLO = 'U'), or lower (if UPLO = 'L').
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices R, A, and T. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then the arrays A
C and T are not referenced.
C
C BETA (input) DOUBLE PRECISION
C The scalar beta. When beta is zero then the array R need
C not be set before entry.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,N)
C On entry with UPLO = 'U', the leading N-by-N upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix R.
C On entry with UPLO = 'L', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix R.
C On exit, the leading N-by-N upper triangular part (if
C UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C this array contains the corresponding triangular part of
C _
C the computed matrix R.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A. If HESS = 'H' the elements below the
C first subdiagonal, if UPLO = 'U', or above the first
C superdiagonal, if UPLO = 'L', need not be set to zero,
C and are not referenced if DICO = 'D'.
C On exit, the leading N-by-N part of this array contains
C the following matrix product
C alpha*T'*T*A, if TRANS = 'N', or
C alpha*A*T*T', otherwise,
C if DICO = 'C', or
C T*A, if TRANS = 'N', or
C A*T, otherwise,
C if DICO = 'D' (and in this case, these products have a
C Hessenberg form, if HESS = 'H').
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C T (input) DOUBLE PRECISION array, dimension (LDT,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular matrix T and
C the strictly lower triangular part need not be set to zero
C (and it is not referenced).
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular matrix T and
C the strictly upper triangular part need not be set to zero
C (and it is not referenced).
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -k, the k-th argument had an illegal
C value.
C
C METHOD
C
C The matrix expression (1) or (2) is efficiently evaluated taking
C the structure into account. BLAS 3 operations (DTRMM, DSYRK and
C their specializations) are used throughout.
C
C NUMERICAL ASPECTS
C
C If A is a full matrix, the algorithm requires approximately
C 3
C N operations, if DICO = 'C';
C 3
C 7/6 x N operations, if DICO = 'D'.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, HESS, TRANS, UPLO
INTEGER INFO, LDA, LDR, LDT, N
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), R(LDR,*), T(LDT,*)
C .. Local Scalars ..
LOGICAL DISCR, REDUC, TRANSP, UPPER
CHARACTER NEGTRA, SIDE
INTEGER I, INFO2, J
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLASCL, DLASET, DSYRK, DTRMM, MB01YD, MB01ZD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
UPPER = LSAME( UPLO, 'U' )
TRANSP = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
REDUC = LSAME( HESS, 'H' )
C
IF( .NOT.( DISCR .OR. LSAME( DICO, 'C' ) ) )THEN
INFO = -1
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) )THEN
INFO = -2
ELSE IF( .NOT.( TRANSP .OR. LSAME( TRANS, 'N' ) ) )THEN
INFO = -3
ELSE IF( .NOT.( REDUC .OR. LSAME( HESS, 'F' ) ) )THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -13
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01WD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
IF ( ALPHA.EQ.ZERO ) THEN
IF ( BETA.EQ.ZERO ) THEN
C
C Special case when both alpha = 0 and beta = 0.
C
CALL DLASET( UPLO, N, N, ZERO, ZERO, R, LDR )
ELSE
C
C Special case alpha = 0.
C
IF ( BETA.NE.ONE )
$ CALL DLASCL( UPLO, 0, 0, ONE, BETA, N, N, R, LDR, INFO2 )
END IF
RETURN
END IF
C
C General case: alpha <> 0.
C
C Compute (in A) T*A, if TRANS = 'N', or
C A*T, otherwise.
C
IF ( TRANSP ) THEN
SIDE = 'R'
NEGTRA = 'N'
ELSE
SIDE = 'L'
NEGTRA = 'T'
END IF
C
IF ( REDUC .AND. N.GT.2 ) THEN
CALL MB01ZD( SIDE, UPLO, 'NoTranspose', 'Non-unit', N, N, 1,
$ ONE, T, LDT, A, LDA, INFO2 )
ELSE
CALL DTRMM( SIDE, UPLO, 'NoTranspose', 'Non-unit', N, N, ONE,
$ T, LDT, A, LDA )
END IF
C
IF( .NOT.DISCR ) THEN
C
C Compute (in A) alpha*T'*T*A, if TRANS = 'N', or
C alpha*A*T*T', otherwise.
C
IF ( REDUC .AND. N.GT.2 ) THEN
CALL MB01ZD( SIDE, UPLO, 'Transpose', 'Non-unit', N, N, 1,
$ ALPHA, T, LDT, A, LDA, INFO2 )
ELSE
CALL DTRMM( SIDE, UPLO, 'Transpose', 'Non-unit', N, N,
$ ALPHA, T, LDT, A, LDA )
END IF
C
C Compute the required triangle of the result, using symmetry.
C
IF ( UPPER ) THEN
IF ( BETA.EQ.ZERO ) THEN
C
DO 20 J = 1, N
DO 10 I = 1, J
R( I, J ) = A( I, J ) + A( J, I )
10 CONTINUE
20 CONTINUE
C
ELSE
C
DO 40 J = 1, N
DO 30 I = 1, J
R( I, J ) = A( I, J ) + A( J, I ) + BETA*R( I, J )
30 CONTINUE
40 CONTINUE
C
END IF
C
ELSE
C
IF ( BETA.EQ.ZERO ) THEN
C
DO 60 J = 1, N
DO 50 I = J, N
R( I, J ) = A( I, J ) + A( J, I )
50 CONTINUE
60 CONTINUE
C
ELSE
C
DO 80 J = 1, N
DO 70 I = J, N
R( I, J ) = A( I, J ) + A( J, I ) + BETA*R( I, J )
70 CONTINUE
80 CONTINUE
C
END IF
C
END IF
C
ELSE
C
C Compute (in R) alpha*A'*T'*T*A + beta*R, if TRANS = 'N', or
C alpha*A*T*T'*A' + beta*R, otherwise.
C
IF ( REDUC .AND. N.GT.2 ) THEN
CALL MB01YD( UPLO, NEGTRA, N, N, 1, ALPHA, BETA, A, LDA, R,
$ LDR, INFO2 )
ELSE
CALL DSYRK( UPLO, NEGTRA, N, N, ALPHA, A, LDA, BETA, R,
$ LDR )
END IF
C
C Compute (in R) -alpha*T'*T + R, if TRANS = 'N', or
C -alpha*T*T' + R, otherwise.
C
CALL MB01YD( UPLO, NEGTRA, N, N, 0, -ALPHA, ONE, T, LDT, R,
$ LDR, INFO2 )
C
END IF
C
RETURN
C *** Last line of MB01WD ***
END
|