File: MB01WD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (343 lines) | stat: -rw-r--r-- 11,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
      SUBROUTINE MB01WD( DICO, UPLO, TRANS, HESS, N, ALPHA, BETA, R,
     $                   LDR, A, LDA, T, LDT, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the matrix formula
C     _
C     R = alpha*( op( A )'*op( T )'*op( T ) + op( T )'*op( T )*op( A ) )
C         + beta*R,                                                  (1)
C
C     if DICO = 'C', or
C     _
C     R = alpha*( op( A )'*op( T )'*op( T )*op( A ) -  op( T )'*op( T ))
C         + beta*R,                                                  (2)
C                                                             _
C     if DICO = 'D', where alpha and beta are scalars, R, and R are
C     symmetric matrices, T is a triangular matrix, A is a general or
C     Hessenberg matrix, and op( M ) is one of
C
C        op( M ) = M   or   op( M ) = M'.
C
C     The result is overwritten on R.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the formula to be evaluated, as follows:
C             = 'C':  formula (1), "continuous-time" case;
C             = 'D':  formula (2), "discrete-time" case.
C
C     UPLO    CHARACTER*1
C             Specifies which triangles of the symmetric matrix R and
C             triangular matrix T are given, as follows:
C             = 'U':  the upper triangular parts of R and T are given;
C             = 'L':  the lower triangular parts of R and T are given;
C
C     TRANS   CHARACTER*1
C             Specifies the form of op( M ) to be used, as follows:
C             = 'N':  op( M ) = M;
C             = 'T':  op( M ) = M';
C             = 'C':  op( M ) = M'.
C
C     HESS    CHARACTER*1
C             Specifies the form of the matrix A, as follows:
C             = 'F':  matrix A is full;
C             = 'H':  matrix A is Hessenberg (or Schur), either upper
C                     (if UPLO = 'U'), or lower (if UPLO = 'L').
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices R, A, and T.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then the arrays A
C             and T are not referenced.
C
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then the array R need
C             not be set before entry.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,N)
C             On entry with UPLO = 'U', the leading N-by-N upper
C             triangular part of this array must contain the upper
C             triangular part of the symmetric matrix R.
C             On entry with UPLO = 'L', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangular part of the symmetric matrix R.
C             On exit, the leading N-by-N upper triangular part (if
C             UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C             this array contains the corresponding triangular part of
C                                 _
C             the computed matrix R.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A. If HESS = 'H' the elements below the
C             first subdiagonal, if UPLO = 'U', or above the first
C             superdiagonal, if UPLO = 'L', need not be set to zero,
C             and are not referenced if DICO = 'D'.
C             On exit, the leading N-by-N part of this array contains
C             the following matrix product
C                alpha*T'*T*A, if TRANS = 'N', or
C                alpha*A*T*T', otherwise,
C             if DICO = 'C', or
C                T*A, if TRANS = 'N', or
C                A*T, otherwise,
C             if DICO = 'D' (and in this case, these products have a
C             Hessenberg form, if HESS = 'H').
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     T       (input) DOUBLE PRECISION array, dimension (LDT,N)
C             If UPLO = 'U', the leading N-by-N upper triangular part of
C             this array must contain the upper triangular matrix T and
C             the strictly lower triangular part need not be set to zero
C             (and it is not referenced).
C             If UPLO = 'L', the leading N-by-N lower triangular part of
C             this array must contain the lower triangular matrix T and
C             the strictly upper triangular part need not be set to zero
C             (and it is not referenced).
C
C     LDT     INTEGER
C             The leading dimension of array T.  LDT >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -k, the k-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix expression (1) or (2) is efficiently evaluated taking
C     the structure into account. BLAS 3 operations (DTRMM, DSYRK and
C     their specializations) are used throughout.
C
C     NUMERICAL ASPECTS
C
C     If A is a full matrix, the algorithm requires approximately
C      3
C     N  operations, if DICO = 'C';
C            3
C     7/6 x N  operations, if DICO = 'D'.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, HESS, TRANS, UPLO
      INTEGER           INFO, LDA, LDR, LDT, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), R(LDR,*), T(LDT,*)
C     .. Local Scalars ..
      LOGICAL           DISCR, REDUC, TRANSP, UPPER
      CHARACTER         NEGTRA, SIDE
      INTEGER           I, INFO2, J
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLASCL, DLASET, DSYRK, DTRMM, MB01YD, MB01ZD,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      DISCR  = LSAME( DICO,  'D' )
      UPPER  = LSAME( UPLO,  'U' )
      TRANSP = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
      REDUC  = LSAME( HESS,  'H' )
C
      IF(      .NOT.( DISCR  .OR. LSAME( DICO,  'C' ) ) )THEN
         INFO = -1
      ELSE IF( .NOT.( UPPER  .OR. LSAME( UPLO,  'L' ) ) )THEN
         INFO = -2
      ELSE IF( .NOT.( TRANSP .OR. LSAME( TRANS, 'N' ) ) )THEN
         INFO = -3
      ELSE IF( .NOT.( REDUC  .OR. LSAME( HESS,  'F' ) ) )THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -13
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01WD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
      IF ( ALPHA.EQ.ZERO ) THEN
         IF ( BETA.EQ.ZERO ) THEN
C
C           Special case when both alpha = 0 and beta = 0.
C
            CALL DLASET( UPLO, N, N, ZERO, ZERO, R, LDR )
         ELSE
C
C           Special case alpha = 0.
C
            IF ( BETA.NE.ONE )
     $         CALL DLASCL( UPLO, 0, 0, ONE, BETA, N, N, R, LDR, INFO2 )
         END IF
         RETURN
      END IF
C
C     General case: alpha <> 0.
C
C     Compute (in A) T*A, if TRANS = 'N', or
C                    A*T, otherwise.
C
      IF ( TRANSP ) THEN
         SIDE   = 'R'
         NEGTRA = 'N'
      ELSE
         SIDE   = 'L'
         NEGTRA = 'T'
      END IF
C
      IF ( REDUC .AND. N.GT.2 ) THEN
         CALL MB01ZD( SIDE, UPLO, 'NoTranspose', 'Non-unit', N, N, 1,
     $                ONE, T, LDT, A, LDA, INFO2 )
      ELSE
         CALL DTRMM( SIDE, UPLO, 'NoTranspose', 'Non-unit', N, N, ONE,
     $               T, LDT, A, LDA )
      END IF
C
      IF( .NOT.DISCR ) THEN
C
C        Compute (in A) alpha*T'*T*A, if TRANS = 'N', or
C                       alpha*A*T*T', otherwise.
C
         IF ( REDUC .AND. N.GT.2 ) THEN
            CALL MB01ZD( SIDE, UPLO, 'Transpose', 'Non-unit', N, N, 1,
     $                   ALPHA, T, LDT, A, LDA, INFO2 )
         ELSE
            CALL DTRMM( SIDE, UPLO, 'Transpose', 'Non-unit', N, N,
     $                  ALPHA, T, LDT, A, LDA )
         END IF
C
C        Compute the required triangle of the result, using symmetry.
C
         IF ( UPPER ) THEN
            IF ( BETA.EQ.ZERO ) THEN
C
               DO 20 J = 1, N
                  DO 10 I = 1, J
                     R( I, J ) = A( I, J ) + A( J, I )
   10             CONTINUE
   20          CONTINUE
C
            ELSE
C
               DO 40 J = 1, N
                  DO 30 I = 1, J
                     R( I, J ) = A( I, J ) + A( J, I ) + BETA*R( I, J )
   30             CONTINUE
   40          CONTINUE
C
            END IF
C
         ELSE
C
            IF ( BETA.EQ.ZERO ) THEN
C
               DO 60 J = 1, N
                  DO 50 I = J, N
                     R( I, J ) = A( I, J ) + A( J, I )
   50             CONTINUE
   60          CONTINUE
C
            ELSE
C
               DO 80 J = 1, N
                  DO 70 I = J, N
                     R( I, J ) = A( I, J ) + A( J, I ) + BETA*R( I, J )
   70             CONTINUE
   80          CONTINUE
C
            END IF
C
         END IF
C
      ELSE
C
C        Compute (in R) alpha*A'*T'*T*A + beta*R, if TRANS = 'N', or
C                       alpha*A*T*T'*A' + beta*R, otherwise.
C
         IF ( REDUC .AND. N.GT.2 ) THEN
            CALL MB01YD( UPLO, NEGTRA, N, N, 1, ALPHA, BETA, A, LDA, R,
     $                   LDR, INFO2 )
         ELSE
            CALL DSYRK( UPLO, NEGTRA, N, N, ALPHA, A, LDA, BETA, R,
     $                  LDR )
         END IF
C
C        Compute (in R) -alpha*T'*T + R, if TRANS = 'N', or
C                       -alpha*T*T' + R, otherwise.
C
         CALL MB01YD( UPLO, NEGTRA, N, N, 0, -ALPHA, ONE, T, LDT, R,
     $                LDR, INFO2 )
C
      END IF
C
      RETURN
C *** Last line of MB01WD ***
      END