1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
SUBROUTINE MB01YD( UPLO, TRANS, N, K, L, ALPHA, BETA, A, LDA, C,
$ LDC, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To perform the symmetric rank k operations
C
C C := alpha*op( A )*op( A )' + beta*C,
C
C where alpha and beta are scalars, C is an n-by-n symmetric matrix,
C op( A ) is an n-by-k matrix, and op( A ) is one of
C
C op( A ) = A or op( A ) = A'.
C
C The matrix A has l nonzero codiagonals, either upper or lower.
C
C ARGUMENTS
C
C Mode Parameters
C
C UPLO CHARACTER*1
C Specifies which triangle of the symmetric matrix C
C is given and computed, as follows:
C = 'U': the upper triangular part is given/computed;
C = 'L': the lower triangular part is given/computed.
C UPLO also defines the pattern of the matrix A (see below).
C
C TRANS CHARACTER*1
C Specifies the form of op( A ) to be used, as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix C. N >= 0.
C
C K (input) INTEGER
C The number of columns of the matrix op( A ). K >= 0.
C
C L (input) INTEGER
C If UPLO = 'U', matrix A has L nonzero subdiagonals.
C If UPLO = 'L', matrix A has L nonzero superdiagonals.
C MAX(0,NR-1) >= L >= 0, if UPLO = 'U',
C MAX(0,NC-1) >= L >= 0, if UPLO = 'L',
C where NR and NC are the numbers of rows and columns of the
C matrix A, respectively.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then the array A is
C not referenced.
C
C BETA (input) DOUBLE PRECISION
C The scalar beta. When beta is zero then the array C need
C not be set before entry.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,NC), where
C NC is K when TRANS = 'N', and is N otherwise.
C If TRANS = 'N', the leading N-by-K part of this array must
C contain the matrix A, otherwise the leading K-by-N part of
C this array must contain the matrix A.
C If UPLO = 'U', only the upper triangular part and the
C first L subdiagonals are referenced, and the remaining
C subdiagonals are assumed to be zero.
C If UPLO = 'L', only the lower triangular part and the
C first L superdiagonals are referenced, and the remaining
C superdiagonals are assumed to be zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= max(1,NR),
C where NR = N, if TRANS = 'N', and NR = K, otherwise.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry with UPLO = 'U', the leading N-by-N upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix C.
C On entry with UPLO = 'L', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix C.
C On exit, the leading N-by-N upper triangular part (if
C UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C this array contains the corresponding triangular part of
C the updated matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The calculations are efficiently performed taking the symmetry
C and structure into account.
C
C FURTHER COMMENTS
C
C The matrix A may have the following patterns, when n = 7, k = 5,
C and l = 2 are used for illustration:
C
C UPLO = 'U', TRANS = 'N' UPLO = 'L', TRANS = 'N'
C
C [ x x x x x ] [ x x x 0 0 ]
C [ x x x x x ] [ x x x x 0 ]
C [ x x x x x ] [ x x x x x ]
C A = [ 0 x x x x ], A = [ x x x x x ],
C [ 0 0 x x x ] [ x x x x x ]
C [ 0 0 0 x x ] [ x x x x x ]
C [ 0 0 0 0 x ] [ x x x x x ]
C
C UPLO = 'U', TRANS = 'T' UPLO = 'L', TRANS = 'T'
C
C [ x x x x x x x ] [ x x x 0 0 0 0 ]
C [ x x x x x x x ] [ x x x x 0 0 0 ]
C A = [ x x x x x x x ], A = [ x x x x x 0 0 ].
C [ 0 x x x x x x ] [ x x x x x x 0 ]
C [ 0 0 x x x x x ] [ x x x x x x x ]
C
C If N = K, the matrix A is upper or lower triangular, for L = 0,
C and upper or lower Hessenberg, for L = 1.
C
C This routine is a specialization of the BLAS 3 routine DSYRK.
C BLAS 1 calls are used when appropriate, instead of in-line code,
C in order to increase the efficiency. If the matrix A is full, or
C its zero triangle has small order, an optimized DSYRK code could
C be faster than MB01YD.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C ..
C .. Scalar Arguments ..
CHARACTER TRANS, UPLO
INTEGER INFO, LDA, LDC, K, L, N
DOUBLE PRECISION ALPHA, BETA
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * )
C ..
C .. Local Scalars ..
LOGICAL TRANSP, UPPER
INTEGER I, J, M, NCOLA, NROWA
DOUBLE PRECISION TEMP
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL DDOT, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DLASCL, DLASET, DSCAL, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
UPPER = LSAME( UPLO, 'U' )
TRANSP = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
IF( TRANSP )THEN
NROWA = K
NCOLA = N
ELSE
NROWA = N
NCOLA = K
END IF
C
IF( UPPER )THEN
M = NROWA
ELSE
M = NCOLA
END IF
C
IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( TRANSP .OR. LSAME( TRANS, 'N' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( K.LT.0 ) THEN
INFO = -4
ELSE IF( L.LT.0 .OR. L.GT.MAX( 0, M-1 ) ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01YD', -INFO )
RETURN
END IF
C
C Quick return, if possible.
C
IF( ( N.EQ.0 ).OR.
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
C
IF ( ALPHA.EQ.ZERO ) THEN
IF ( BETA.EQ.ZERO ) THEN
C
C Special case when both alpha = 0 and beta = 0.
C
CALL DLASET( UPLO, N, N, ZERO, ZERO, C, LDC )
ELSE
C
C Special case alpha = 0.
C
CALL DLASCL( UPLO, 0, 0, ONE, BETA, N, N, C, LDC, INFO )
END IF
RETURN
END IF
C
C General case: alpha <> 0.
C
IF ( .NOT.TRANSP ) THEN
C
C Form C := alpha*A*A' + beta*C.
C
IF ( UPPER ) THEN
C
DO 30 J = 1, N
IF ( BETA.EQ.ZERO ) THEN
C
DO 10 I = 1, J
C( I, J ) = ZERO
10 CONTINUE
C
ELSE IF ( BETA.NE.ONE ) THEN
CALL DSCAL ( J, BETA, C( 1, J ), 1 )
END IF
C
DO 20 M = MAX( 1, J-L ), K
CALL DAXPY ( MIN( J, L+M ), ALPHA*A( J, M ),
$ A( 1, M ), 1, C( 1, J ), 1 )
20 CONTINUE
C
30 CONTINUE
C
ELSE
C
DO 60 J = 1, N
IF ( BETA.EQ.ZERO ) THEN
C
DO 40 I = J, N
C( I, J ) = ZERO
40 CONTINUE
C
ELSE IF ( BETA.NE.ONE ) THEN
CALL DSCAL ( N-J+1, BETA, C( J, J ), 1 )
END IF
C
DO 50 M = 1, MIN( J+L, K )
CALL DAXPY ( N-J+1, ALPHA*A( J, M ), A( J, M ), 1,
$ C( J, J ), 1 )
50 CONTINUE
C
60 CONTINUE
C
END IF
C
ELSE
C
C Form C := alpha*A'*A + beta*C.
C
IF ( UPPER ) THEN
C
DO 80 J = 1, N
C
DO 70 I = 1, J
TEMP = ALPHA*DDOT ( MIN( J+L, K ), A( 1, I ), 1,
$ A( 1, J ), 1 )
IF ( BETA.EQ.ZERO ) THEN
C( I, J ) = TEMP
ELSE
C( I, J ) = TEMP + BETA*C( I, J )
END IF
70 CONTINUE
C
80 CONTINUE
C
ELSE
C
DO 100 J = 1, N
C
DO 90 I = J, N
M = MAX( 1, I-L )
TEMP = ALPHA*DDOT ( K-M+1, A( M, I ), 1, A( M, J ),
$ 1 )
IF ( BETA.EQ.ZERO ) THEN
C( I, J ) = TEMP
ELSE
C( I, J ) = TEMP + BETA*C( I, J )
END IF
90 CONTINUE
C
100 CONTINUE
C
END IF
C
END IF
C
RETURN
C
C *** Last line of MB01YD ***
END
|