File: MB01YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (352 lines) | stat: -rw-r--r-- 10,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
      SUBROUTINE MB01YD( UPLO, TRANS, N, K, L, ALPHA, BETA, A, LDA, C,
     $                   LDC, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To perform the symmetric rank k operations
C
C        C := alpha*op( A )*op( A )' + beta*C,
C
C     where alpha and beta are scalars, C is an n-by-n symmetric matrix,
C     op( A ) is an n-by-k matrix, and op( A ) is one of
C
C        op( A ) = A   or   op( A ) = A'.
C
C     The matrix A has l nonzero codiagonals, either upper or lower.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Specifies which triangle of the symmetric matrix C
C             is given and computed, as follows:
C             = 'U':  the upper triangular part is given/computed;
C             = 'L':  the lower triangular part is given/computed.
C             UPLO also defines the pattern of the matrix A (see below).
C
C     TRANS   CHARACTER*1
C             Specifies the form of op( A ) to be used, as follows:
C             = 'N':  op( A ) = A;
C             = 'T':  op( A ) = A';
C             = 'C':  op( A ) = A'.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix C.  N >= 0.
C
C     K       (input) INTEGER
C             The number of columns of the matrix op( A ).  K >= 0.
C
C     L       (input) INTEGER
C             If UPLO = 'U', matrix A has L nonzero subdiagonals.
C             If UPLO = 'L', matrix A has L nonzero superdiagonals.
C             MAX(0,NR-1) >= L >= 0, if UPLO = 'U',
C             MAX(0,NC-1) >= L >= 0, if UPLO = 'L',
C             where NR and NC are the numbers of rows and columns of the
C             matrix A, respectively.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then the array A is
C             not referenced.
C
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then the array C need
C             not be set before entry.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,NC), where
C             NC is K when TRANS = 'N', and is N otherwise.
C             If TRANS = 'N', the leading N-by-K part of this array must
C             contain the matrix A, otherwise the leading K-by-N part of
C             this array must contain the matrix A.
C             If UPLO = 'U', only the upper triangular part and the
C             first L subdiagonals are referenced, and the remaining
C             subdiagonals are assumed to be zero.
C             If UPLO = 'L', only the lower triangular part and the
C             first L superdiagonals are referenced, and the remaining
C             superdiagonals are assumed to be zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= max(1,NR),
C             where NR = N, if TRANS = 'N', and NR = K, otherwise.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry with UPLO = 'U', the leading N-by-N upper
C             triangular part of this array must contain the upper
C             triangular part of the symmetric matrix C.
C             On entry with UPLO = 'L', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangular part of the symmetric matrix C.
C             On exit, the leading N-by-N upper triangular part (if
C             UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C             this array contains the corresponding triangular part of
C             the updated matrix C.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The calculations are efficiently performed taking the symmetry
C     and structure into account.
C
C     FURTHER COMMENTS
C
C     The matrix A may have the following patterns, when n = 7, k = 5,
C     and l = 2 are used for illustration:
C
C     UPLO = 'U', TRANS = 'N'         UPLO = 'L', TRANS = 'N'
C
C            [ x x x x x ]                   [ x x x 0 0 ]
C            [ x x x x x ]                   [ x x x x 0 ]
C            [ x x x x x ]                   [ x x x x x ]
C        A = [ 0 x x x x ],              A = [ x x x x x ],
C            [ 0 0 x x x ]                   [ x x x x x ]
C            [ 0 0 0 x x ]                   [ x x x x x ]
C            [ 0 0 0 0 x ]                   [ x x x x x ]
C
C     UPLO = 'U', TRANS = 'T'         UPLO = 'L', TRANS = 'T'
C
C            [ x x x x x x x ]               [ x x x 0 0 0 0 ]
C            [ x x x x x x x ]               [ x x x x 0 0 0 ]
C        A = [ x x x x x x x ],          A = [ x x x x x 0 0 ].
C            [ 0 x x x x x x ]               [ x x x x x x 0 ]
C            [ 0 0 x x x x x ]               [ x x x x x x x ]
C
C     If N = K, the matrix A is upper or lower triangular, for L = 0,
C     and upper or lower Hessenberg, for L = 1.
C
C     This routine is a specialization of the BLAS 3 routine DSYRK.
C     BLAS 1 calls are used when appropriate, instead of in-line code,
C     in order to increase the efficiency. If the matrix A is full, or
C     its zero triangle has small order, an optimized DSYRK code could
C     be faster than MB01YD.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          TRANS, UPLO
      INTEGER            INFO, LDA, LDC, K, L, N
      DOUBLE PRECISION   ALPHA, BETA
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            TRANSP, UPPER
      INTEGER            I, J, M, NCOLA, NROWA
      DOUBLE PRECISION   TEMP
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           DDOT, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DLASCL, DLASET, DSCAL, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      UPPER  = LSAME( UPLO,  'U' )
      TRANSP = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF( TRANSP )THEN
         NROWA = K
         NCOLA = N
      ELSE
         NROWA = N
         NCOLA = K
      END IF
C
      IF( UPPER )THEN
         M = NROWA
      ELSE
         M = NCOLA
      END IF
C
      IF(      .NOT.( UPPER  .OR. LSAME( UPLO,  'L' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( TRANSP .OR. LSAME( TRANS, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( K.LT.0 ) THEN
         INFO = -4
      ELSE IF( L.LT.0 .OR. L.GT.MAX( 0, M-1 ) ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01YD', -INFO )
         RETURN
      END IF
C
C     Quick return, if possible.
C
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
C
      IF ( ALPHA.EQ.ZERO ) THEN
         IF ( BETA.EQ.ZERO ) THEN
C
C           Special case when both alpha = 0 and beta = 0.
C
            CALL DLASET( UPLO, N, N, ZERO, ZERO, C, LDC )
         ELSE
C
C           Special case alpha = 0.
C
            CALL DLASCL( UPLO, 0, 0, ONE, BETA, N, N, C, LDC, INFO )
         END IF
         RETURN
      END IF
C
C     General case: alpha <> 0.
C
      IF ( .NOT.TRANSP ) THEN
C
C        Form  C := alpha*A*A' + beta*C.
C
         IF ( UPPER ) THEN
C
            DO 30 J = 1, N
               IF ( BETA.EQ.ZERO ) THEN
C
                  DO 10 I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
C
               ELSE IF ( BETA.NE.ONE ) THEN
                  CALL DSCAL ( J, BETA, C( 1, J ), 1 )
               END IF
C
               DO 20 M = MAX( 1, J-L ), K
                  CALL DAXPY ( MIN( J, L+M ), ALPHA*A( J, M ),
     $                         A( 1, M ), 1, C( 1, J ), 1 )
   20          CONTINUE
C
   30       CONTINUE
C
         ELSE
C
            DO 60 J = 1, N
               IF ( BETA.EQ.ZERO ) THEN
C
                  DO 40 I = J, N
                     C( I, J ) = ZERO
   40             CONTINUE
C
               ELSE IF ( BETA.NE.ONE ) THEN
                  CALL DSCAL ( N-J+1, BETA, C( J, J ), 1 )
               END IF
C
               DO 50 M = 1, MIN( J+L, K )
                  CALL DAXPY ( N-J+1, ALPHA*A( J, M ), A( J, M ), 1,
     $                         C( J, J ), 1 )
   50          CONTINUE
C
   60       CONTINUE
C
         END IF
C
      ELSE
C
C        Form  C := alpha*A'*A + beta*C.
C
         IF ( UPPER ) THEN
C
            DO 80 J = 1, N
C
               DO 70 I = 1, J
                  TEMP = ALPHA*DDOT ( MIN( J+L, K ), A( 1, I ), 1,
     $                                A( 1, J ), 1 )
                  IF ( BETA.EQ.ZERO ) THEN
                     C( I, J ) = TEMP
                  ELSE
                     C( I, J ) = TEMP + BETA*C( I, J )
                  END IF
   70          CONTINUE
C
   80       CONTINUE
C
         ELSE
C
            DO 100 J = 1, N
C
               DO 90 I = J, N
                  M = MAX( 1, I-L )
                  TEMP = ALPHA*DDOT ( K-M+1, A( M, I ), 1, A( M, J ),
     $                                1 )
                  IF ( BETA.EQ.ZERO ) THEN
                     C( I, J ) = TEMP
                  ELSE
                     C( I, J ) = TEMP + BETA*C( I, J )
                  END IF
   90          CONTINUE
C
  100       CONTINUE
C
         END IF
C
      END IF
C
      RETURN
C
C *** Last line of MB01YD ***
      END