1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
SUBROUTINE MB01ZD( SIDE, UPLO, TRANST, DIAG, M, N, L, ALPHA, T,
$ LDT, H, LDH, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrix product
C
C H := alpha*op( T )*H, or H := alpha*H*op( T ),
C
C where alpha is a scalar, H is an m-by-n upper or lower
C Hessenberg-like matrix (with l nonzero subdiagonals or
C superdiagonals, respectively), T is a unit, or non-unit,
C upper or lower triangular matrix, and op( T ) is one of
C
C op( T ) = T or op( T ) = T'.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specifies whether the triangular matrix T appears on the
C left or right in the matrix product, as follows:
C = 'L': the product alpha*op( T )*H is computed;
C = 'R': the product alpha*H*op( T ) is computed.
C
C UPLO CHARACTER*1
C Specifies the form of the matrices T and H, as follows:
C = 'U': the matrix T is upper triangular and the matrix H
C is upper Hessenberg-like;
C = 'L': the matrix T is lower triangular and the matrix H
C is lower Hessenberg-like.
C
C TRANST CHARACTER*1
C Specifies the form of op( T ) to be used, as follows:
C = 'N': op( T ) = T;
C = 'T': op( T ) = T';
C = 'C': op( T ) = T'.
C
C DIAG CHARACTER*1.
C Specifies whether or not T is unit triangular, as follows:
C = 'U': the matrix T is assumed to be unit triangular;
C = 'N': the matrix T is not assumed to be unit triangular.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of H. M >= 0.
C
C N (input) INTEGER
C The number of columns of H. N >= 0.
C
C L (input) INTEGER
C If UPLO = 'U', matrix H has L nonzero subdiagonals.
C If UPLO = 'L', matrix H has L nonzero superdiagonals.
C MAX(0,M-1) >= L >= 0, if UPLO = 'U';
C MAX(0,N-1) >= L >= 0, if UPLO = 'L'.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then T is not
C referenced and H need not be set before entry.
C
C T (input) DOUBLE PRECISION array, dimension (LDT,k), where
C k is m when SIDE = 'L' and is n when SIDE = 'R'.
C If UPLO = 'U', the leading k-by-k upper triangular part
C of this array must contain the upper triangular matrix T
C and the strictly lower triangular part is not referenced.
C If UPLO = 'L', the leading k-by-k lower triangular part
C of this array must contain the lower triangular matrix T
C and the strictly upper triangular part is not referenced.
C Note that when DIAG = 'U', the diagonal elements of T are
C not referenced either, but are assumed to be unity.
C
C LDT INTEGER
C The leading dimension of array T.
C LDT >= MAX(1,M), if SIDE = 'L';
C LDT >= MAX(1,N), if SIDE = 'R'.
C
C H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
C On entry, if UPLO = 'U', the leading M-by-N upper
C Hessenberg part of this array must contain the upper
C Hessenberg-like matrix H.
C On entry, if UPLO = 'L', the leading M-by-N lower
C Hessenberg part of this array must contain the lower
C Hessenberg-like matrix H.
C On exit, the leading M-by-N part of this array contains
C the matrix product alpha*op( T )*H, if SIDE = 'L',
C or alpha*H*op( T ), if SIDE = 'R'. If TRANST = 'N', this
C product has the same pattern as the given matrix H;
C the elements below the L-th subdiagonal (if UPLO = 'U'),
C or above the L-th superdiagonal (if UPLO = 'L'), are not
C referenced in this case. If TRANST = 'T', the elements
C below the (N+L)-th row (if UPLO = 'U', SIDE = 'R', and
C M > N+L), or at the right of the (M+L)-th column
C (if UPLO = 'L', SIDE = 'L', and N > M+L), are not set to
C zero nor referenced.
C
C LDH INTEGER
C The leading dimension of array H. LDH >= max(1,M).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The calculations are efficiently performed taking the problem
C structure into account.
C
C FURTHER COMMENTS
C
C The matrix H may have the following patterns, when m = 7, n = 6,
C and l = 2 are used for illustration:
C
C UPLO = 'U' UPLO = 'L'
C
C [ x x x x x x ] [ x x x 0 0 0 ]
C [ x x x x x x ] [ x x x x 0 0 ]
C [ x x x x x x ] [ x x x x x 0 ]
C H = [ 0 x x x x x ], H = [ x x x x x x ].
C [ 0 0 x x x x ] [ x x x x x x ]
C [ 0 0 0 x x x ] [ x x x x x x ]
C [ 0 0 0 0 x x ] [ x x x x x x ]
C
C The products T*H or H*T have the same pattern as H, but the
C products T'*H or H*T' may be full matrices.
C
C If m = n, the matrix H is upper or lower triangular, for l = 0,
C and upper or lower Hessenberg, for l = 1.
C
C This routine is a specialization of the BLAS 3 routine DTRMM.
C BLAS 1 calls are used when appropriate, instead of in-line code,
C in order to increase the efficiency. If the matrix H is full, or
C its zero triangle has small order, an optimized DTRMM code could
C be faster than MB01ZD.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C ..
C .. Scalar Arguments ..
CHARACTER DIAG, SIDE, TRANST, UPLO
INTEGER INFO, L, LDH, LDT, M, N
DOUBLE PRECISION ALPHA
C ..
C .. Array Arguments ..
DOUBLE PRECISION H( LDH, * ), T( LDT, * )
C ..
C .. Local Scalars ..
LOGICAL LSIDE, NOUNIT, TRANS, UPPER
INTEGER I, I1, I2, J, K, M2, NROWT
DOUBLE PRECISION TEMP
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL DDOT, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
LSIDE = LSAME( SIDE, 'L' )
UPPER = LSAME( UPLO, 'U' )
TRANS = LSAME( TRANST, 'T' ) .OR. LSAME( TRANST, 'C' )
NOUNIT = LSAME( DIAG, 'N' )
IF( LSIDE )THEN
NROWT = M
ELSE
NROWT = N
END IF
C
IF( UPPER )THEN
M2 = M
ELSE
M2 = N
END IF
C
INFO = 0
IF( .NOT.( LSIDE .OR. LSAME( SIDE, 'R' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( TRANS .OR. LSAME( TRANST, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( NOUNIT .OR. LSAME( DIAG, 'U' ) ) ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( L.LT.0 .OR. L.GT.MAX( 0, M2-1 ) ) THEN
INFO = -7
ELSE IF( LDT.LT.MAX( 1, NROWT ) ) THEN
INFO = -10
ELSE IF( LDH.LT.MAX( 1, M ) )THEN
INFO = -12
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01ZD', -INFO )
RETURN
END IF
C
C Quick return, if possible.
C
IF( MIN( M, N ).EQ.0 )
$ RETURN
C
C Also, when alpha = 0.
C
IF( ALPHA.EQ.ZERO ) THEN
C
DO 20, J = 1, N
IF( UPPER ) THEN
I1 = 1
I2 = MIN( J+L, M )
ELSE
I1 = MAX( 1, J-L )
I2 = M
END IF
C
DO 10, I = I1, I2
H( I, J ) = ZERO
10 CONTINUE
C
20 CONTINUE
C
RETURN
END IF
C
C Start the operations.
C
IF( LSIDE )THEN
IF( .NOT.TRANS ) THEN
C
C Form H := alpha*T*H.
C
IF( UPPER ) THEN
C
DO 40, J = 1, N
C
DO 30, K = 1, MIN( J+L, M )
IF( H( K, J ).NE.ZERO ) THEN
TEMP = ALPHA*H( K, J )
CALL DAXPY ( K-1, TEMP, T( 1, K ), 1, H( 1, J ),
$ 1 )
IF( NOUNIT )
$ TEMP = TEMP*T( K, K )
H( K, J ) = TEMP
END IF
30 CONTINUE
C
40 CONTINUE
C
ELSE
C
DO 60, J = 1, N
C
DO 50 K = M, MAX( 1, J-L ), -1
IF( H( K, J ).NE.ZERO ) THEN
TEMP = ALPHA*H( K, J )
H( K, J ) = TEMP
IF( NOUNIT )
$ H( K, J ) = H( K, J )*T( K, K )
CALL DAXPY ( M-K, TEMP, T( K+1, K ), 1,
$ H( K+1, J ), 1 )
END IF
50 CONTINUE
C
60 CONTINUE
C
END IF
C
ELSE
C
C Form H := alpha*T'*H.
C
IF( UPPER ) THEN
C
DO 80, J = 1, N
I1 = J + L
C
DO 70, I = M, 1, -1
IF( I.GT.I1 ) THEN
TEMP = DDOT( I1, T( 1, I ), 1, H( 1, J ), 1 )
ELSE
TEMP = H( I, J )
IF( NOUNIT )
$ TEMP = TEMP*T( I, I )
TEMP = TEMP + DDOT( I-1, T( 1, I ), 1,
$ H( 1, J ), 1 )
END IF
H( I, J ) = ALPHA*TEMP
70 CONTINUE
C
80 CONTINUE
C
ELSE
C
DO 100, J = 1, MIN( M+L, N )
I1 = J - L
C
DO 90, I = 1, M
IF( I.LT.I1 ) THEN
TEMP = DDOT( M-I1+1, T( I1, I ), 1, H( I1, J ),
$ 1 )
ELSE
TEMP = H( I, J )
IF( NOUNIT )
$ TEMP = TEMP*T( I, I )
TEMP = TEMP + DDOT( M-I, T( I+1, I ), 1,
$ H( I+1, J ), 1 )
END IF
H( I, J ) = ALPHA*TEMP
90 CONTINUE
C
100 CONTINUE
C
END IF
C
END IF
C
ELSE
C
IF( .NOT.TRANS ) THEN
C
C Form H := alpha*H*T.
C
IF( UPPER ) THEN
C
DO 120, J = N, 1, -1
I2 = MIN( J+L, M )
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*T( J, J )
CALL DSCAL ( I2, TEMP, H( 1, J ), 1 )
C
DO 110, K = 1, J - 1
CALL DAXPY ( I2, ALPHA*T( K, J ), H( 1, K ), 1,
$ H( 1, J ), 1 )
110 CONTINUE
C
120 CONTINUE
C
ELSE
C
DO 140, J = 1, N
I1 = MAX( 1, J-L )
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*T( J, J )
CALL DSCAL ( M-I1+1, TEMP, H( I1, J ), 1 )
C
DO 130, K = J + 1, N
CALL DAXPY ( M-I1+1, ALPHA*T( K, J ), H( I1, K ),
$ 1, H( I1, J ), 1 )
130 CONTINUE
C
140 CONTINUE
C
END IF
C
ELSE
C
C Form H := alpha*H*T'.
C
IF( UPPER ) THEN
M2 = MIN( N+L, M )
C
DO 170, K = 1, N
I1 = MIN( K+L, M )
I2 = MIN( K+L, M2 )
C
DO 160, J = 1, K - 1
IF( T( J, K ).NE.ZERO ) THEN
TEMP = ALPHA*T( J, K )
CALL DAXPY ( I1, TEMP, H( 1, K ), 1, H( 1, J ),
$ 1 )
C
DO 150, I = I1 + 1, I2
H( I, J ) = TEMP*H( I, K )
150 CONTINUE
C
END IF
160 CONTINUE
C
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*T( K, K )
IF( TEMP.NE.ONE )
$ CALL DSCAL( I2, TEMP, H( 1, K ), 1 )
170 CONTINUE
C
ELSE
C
DO 200, K = N, 1, -1
I1 = MAX( 1, K-L )
I2 = MAX( 1, K-L+1 )
M2 = MIN( M, I2-1 )
C
DO 190, J = K + 1, N
IF( T( J, K ).NE.ZERO ) THEN
TEMP = ALPHA*T( J, K )
CALL DAXPY ( M-I2+1, TEMP, H( I2, K ), 1,
$ H( I2, J ), 1 )
C
DO 180, I = I1, M2
H( I, J ) = TEMP*H( I, K )
180 CONTINUE
C
END IF
190 CONTINUE
C
TEMP = ALPHA
IF( NOUNIT )
$ TEMP = TEMP*T( K, K )
IF( TEMP.NE.ONE )
$ CALL DSCAL( M-I1+1, TEMP, H( I1, K ), 1 )
200 CONTINUE
C
END IF
C
END IF
C
END IF
C
RETURN
C
C *** Last line of MB01ZD ***
END
|