File: MB01ZD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (475 lines) | stat: -rw-r--r-- 14,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
      SUBROUTINE MB01ZD( SIDE, UPLO, TRANST, DIAG, M, N, L, ALPHA, T,
     $                   LDT, H, LDH, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the matrix product
C
C        H := alpha*op( T )*H,   or   H := alpha*H*op( T ),
C
C     where alpha is a scalar, H is an m-by-n upper or lower
C     Hessenberg-like matrix (with l nonzero subdiagonals or
C     superdiagonals, respectively), T is a unit, or non-unit,
C     upper or lower triangular matrix, and op( T ) is one of
C
C        op( T ) = T   or   op( T ) = T'.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SIDE    CHARACTER*1
C             Specifies whether the triangular matrix T appears on the
C             left or right in the matrix product, as follows:
C             = 'L':  the product alpha*op( T )*H is computed;
C             = 'R':  the product alpha*H*op( T ) is computed.
C
C     UPLO    CHARACTER*1
C             Specifies the form of the matrices T and H, as follows:
C             = 'U':  the matrix T is upper triangular and the matrix H
C                     is upper Hessenberg-like;
C             = 'L':  the matrix T is lower triangular and the matrix H
C                     is lower Hessenberg-like.
C
C     TRANST  CHARACTER*1
C             Specifies the form of op( T ) to be used, as follows:
C             = 'N':  op( T ) = T;
C             = 'T':  op( T ) = T';
C             = 'C':  op( T ) = T'.
C
C     DIAG    CHARACTER*1.
C             Specifies whether or not T is unit triangular, as follows:
C             = 'U':  the matrix T is assumed to be unit triangular;
C             = 'N':  the matrix T is not assumed to be unit triangular.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of H.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of H.  N >= 0.
C
C     L       (input) INTEGER
C             If UPLO = 'U', matrix H has L nonzero subdiagonals.
C             If UPLO = 'L', matrix H has L nonzero superdiagonals.
C             MAX(0,M-1) >= L >= 0, if UPLO = 'U';
C             MAX(0,N-1) >= L >= 0, if UPLO = 'L'.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then T is not
C             referenced and H need not be set before entry.
C
C     T       (input) DOUBLE PRECISION array, dimension (LDT,k), where
C             k is m when SIDE = 'L' and is n when SIDE = 'R'.
C             If UPLO = 'U', the leading k-by-k upper triangular part
C             of this array must contain the upper triangular matrix T
C             and the strictly lower triangular part is not referenced.
C             If UPLO = 'L', the leading k-by-k lower triangular part
C             of this array must contain the lower triangular matrix T
C             and the strictly upper triangular part is not referenced.
C             Note that when DIAG = 'U', the diagonal elements of T are
C             not referenced either, but are assumed to be unity.
C
C     LDT     INTEGER
C             The leading dimension of array T.
C             LDT >= MAX(1,M), if SIDE = 'L';
C             LDT >= MAX(1,N), if SIDE = 'R'.
C
C     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
C             On entry, if UPLO = 'U', the leading M-by-N upper
C             Hessenberg part of this array must contain the upper
C             Hessenberg-like matrix H.
C             On entry, if UPLO = 'L', the leading M-by-N lower
C             Hessenberg part of this array must contain the lower
C             Hessenberg-like matrix H.
C             On exit, the leading M-by-N part of this array contains
C             the matrix product alpha*op( T )*H, if SIDE = 'L',
C             or alpha*H*op( T ), if SIDE = 'R'. If TRANST = 'N', this
C             product has the same pattern as the given matrix H;
C             the elements below the L-th subdiagonal (if UPLO = 'U'),
C             or above the L-th superdiagonal (if UPLO = 'L'), are not
C             referenced in this case. If TRANST = 'T', the elements
C             below the (N+L)-th row (if UPLO = 'U', SIDE = 'R', and
C             M > N+L), or at the right of the (M+L)-th column
C             (if UPLO = 'L', SIDE = 'L', and N > M+L), are not set to
C             zero nor referenced.
C
C     LDH     INTEGER
C             The leading dimension of array H.  LDH >= max(1,M).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The calculations are efficiently performed taking the problem
C     structure into account.
C
C     FURTHER COMMENTS
C
C     The matrix H may have the following patterns, when m = 7, n = 6,
C     and l = 2 are used for illustration:
C
C               UPLO = 'U'                    UPLO = 'L'
C
C            [ x x x x x x ]               [ x x x 0 0 0 ]
C            [ x x x x x x ]               [ x x x x 0 0 ]
C            [ x x x x x x ]               [ x x x x x 0 ]
C        H = [ 0 x x x x x ],          H = [ x x x x x x ].
C            [ 0 0 x x x x ]               [ x x x x x x ]
C            [ 0 0 0 x x x ]               [ x x x x x x ]
C            [ 0 0 0 0 x x ]               [ x x x x x x ]
C
C     The products T*H or H*T have the same pattern as H, but the
C     products T'*H or H*T' may be full matrices.
C
C     If m = n, the matrix H is upper or lower triangular, for l = 0,
C     and upper or lower Hessenberg, for l = 1.
C
C     This routine is a specialization of the BLAS 3 routine DTRMM.
C     BLAS 1 calls are used when appropriate, instead of in-line code,
C     in order to increase the efficiency. If the matrix H is full, or
C     its zero triangle has small order, an optimized DTRMM code could
C     be faster than MB01ZD.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Nov. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          DIAG, SIDE, TRANST, UPLO
      INTEGER            INFO, L, LDH, LDT, M, N
      DOUBLE PRECISION   ALPHA
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), T( LDT, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, TRANS, UPPER
      INTEGER            I, I1, I2, J, K, M2, NROWT
      DOUBLE PRECISION   TEMP
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           DDOT, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      LSIDE  = LSAME( SIDE,   'L' )
      UPPER  = LSAME( UPLO,   'U' )
      TRANS  = LSAME( TRANST, 'T' ) .OR. LSAME( TRANST, 'C' )
      NOUNIT = LSAME( DIAG,   'N' )
      IF( LSIDE )THEN
         NROWT = M
      ELSE
         NROWT = N
      END IF
C
      IF( UPPER )THEN
         M2 = M
      ELSE
         M2 = N
      END IF
C
      INFO   = 0
      IF(      .NOT.( LSIDE  .OR. LSAME( SIDE,   'R' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( UPPER  .OR. LSAME( UPLO,   'L' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( TRANS  .OR. LSAME( TRANST, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( NOUNIT .OR. LSAME( DIAG,   'U' ) ) ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( L.LT.0 .OR. L.GT.MAX( 0, M2-1 ) ) THEN
         INFO = -7
      ELSE IF( LDT.LT.MAX( 1, NROWT ) ) THEN
         INFO = -10
      ELSE IF( LDH.LT.MAX( 1, M ) )THEN
         INFO = -12
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01ZD', -INFO )
         RETURN
      END IF
C
C     Quick return, if possible.
C
      IF( MIN( M, N ).EQ.0 )
     $   RETURN
C
C     Also, when alpha = 0.
C
      IF( ALPHA.EQ.ZERO ) THEN
C
         DO 20, J = 1, N
            IF( UPPER ) THEN
               I1 = 1
               I2 = MIN( J+L, M )
            ELSE
               I1 = MAX( 1, J-L )
               I2 = M
            END IF
C
            DO 10, I = I1, I2
               H( I, J ) = ZERO
   10       CONTINUE
C
   20    CONTINUE
C
         RETURN
      END IF
C
C     Start the operations.
C
      IF( LSIDE )THEN
         IF( .NOT.TRANS ) THEN
C
C           Form  H := alpha*T*H.
C
            IF( UPPER ) THEN
C
               DO 40, J = 1, N
C
                  DO 30, K = 1, MIN( J+L, M )
                     IF( H( K, J ).NE.ZERO ) THEN
                        TEMP = ALPHA*H( K, J )
                        CALL DAXPY ( K-1, TEMP, T( 1, K ), 1, H( 1, J ),
     $                               1 )
                        IF( NOUNIT )
     $                     TEMP = TEMP*T( K, K )
                        H( K, J ) = TEMP
                     END IF
   30             CONTINUE
C
   40          CONTINUE
C
            ELSE
C
               DO 60, J = 1, N
C
                  DO 50 K = M, MAX( 1, J-L ), -1
                     IF( H( K, J ).NE.ZERO ) THEN
                        TEMP      = ALPHA*H( K, J )
                        H( K, J ) = TEMP
                        IF( NOUNIT )
     $                     H( K, J ) = H( K, J )*T( K, K )
                        CALL DAXPY ( M-K, TEMP, T( K+1, K ), 1,
     $                                          H( K+1, J ), 1 )
                     END IF
   50             CONTINUE
C
   60          CONTINUE
C
            END IF
C
         ELSE
C
C           Form  H := alpha*T'*H.
C
            IF( UPPER ) THEN
C
               DO 80, J = 1, N
                  I1 = J + L
C
                  DO 70, I = M, 1, -1
                     IF( I.GT.I1 ) THEN
                        TEMP = DDOT( I1, T( 1, I ), 1, H( 1, J ), 1 )
                     ELSE
                        TEMP = H( I, J )
                        IF( NOUNIT )
     $                     TEMP = TEMP*T( I, I )
                        TEMP = TEMP + DDOT( I-1, T( 1, I ), 1,
     $                                           H( 1, J ), 1 )
                     END IF
                     H( I, J ) = ALPHA*TEMP
   70             CONTINUE
C
   80          CONTINUE
C
            ELSE
C
               DO 100, J = 1, MIN( M+L, N )
                  I1 = J - L
C
                  DO 90, I = 1, M
                     IF( I.LT.I1 ) THEN
                        TEMP = DDOT( M-I1+1, T( I1, I ), 1, H( I1, J ),
     $                               1 )
                     ELSE
                        TEMP = H( I, J )
                        IF( NOUNIT )
     $                     TEMP = TEMP*T( I, I )
                        TEMP = TEMP + DDOT( M-I, T( I+1, I ), 1,
     $                                           H( I+1, J ), 1 )
                     END IF
                     H( I, J ) = ALPHA*TEMP
   90             CONTINUE
C
  100          CONTINUE
C
            END IF
C
         END IF
C
      ELSE
C
         IF( .NOT.TRANS ) THEN
C
C           Form  H := alpha*H*T.
C
            IF( UPPER ) THEN
C
               DO 120, J = N, 1, -1
                  I2   = MIN( J+L, M )
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*T( J, J )
                  CALL DSCAL ( I2, TEMP, H( 1, J ), 1 )
C
                  DO 110, K = 1, J - 1
                     CALL DAXPY ( I2, ALPHA*T( K, J ), H( 1, K ), 1,
     $                                                 H( 1, J ), 1 )
  110             CONTINUE
C
  120          CONTINUE
C
            ELSE
C
               DO 140, J = 1, N
                  I1   = MAX( 1, J-L )
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*T( J, J )
                  CALL DSCAL ( M-I1+1, TEMP, H( I1, J ), 1 )
C
                  DO 130, K = J + 1, N
                     CALL DAXPY ( M-I1+1, ALPHA*T( K, J ), H( I1, K ),
     $                            1, H( I1, J ), 1 )
  130             CONTINUE
C
  140          CONTINUE
C
            END IF
C
         ELSE
C
C           Form  H := alpha*H*T'.
C
            IF( UPPER ) THEN
               M2 = MIN( N+L, M )
C
               DO 170, K = 1, N
                  I1 = MIN( K+L, M )
                  I2 = MIN( K+L, M2 )
C
                  DO 160, J = 1, K - 1
                     IF( T( J, K ).NE.ZERO ) THEN
                        TEMP = ALPHA*T( J, K )
                        CALL DAXPY ( I1, TEMP, H( 1, K ), 1, H( 1, J ),
     $                               1 )
C
                        DO 150, I = I1 + 1, I2
                           H( I, J ) = TEMP*H( I, K )
  150                   CONTINUE
C
                     END IF
  160             CONTINUE
C
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*T( K, K )
                  IF( TEMP.NE.ONE )
     $               CALL DSCAL( I2, TEMP, H( 1, K ), 1 )
  170          CONTINUE
C
            ELSE
C
               DO 200, K = N, 1, -1
                  I1 = MAX( 1, K-L )
                  I2 = MAX( 1, K-L+1 )
                  M2 = MIN( M, I2-1 )
C
                  DO 190, J = K + 1, N
                     IF( T( J, K ).NE.ZERO ) THEN
                        TEMP = ALPHA*T( J, K )
                        CALL DAXPY ( M-I2+1, TEMP, H( I2, K ), 1,
     $                               H( I2, J ), 1 )
C
                        DO 180, I = I1, M2
                           H( I, J ) = TEMP*H( I, K )
  180                   CONTINUE
C
                     END IF
  190             CONTINUE
C
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*T( K, K )
                  IF( TEMP.NE.ONE )
     $               CALL DSCAL( M-I1+1, TEMP, H( I1, K ), 1 )
  200          CONTINUE
C
            END IF
C
         END IF
C
      END IF
C
      RETURN
C
C *** Last line of MB01ZD ***
      END