1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
SUBROUTINE MB02CU( TYPEG, K, P, Q, NB, A1, LDA1, A2, LDA2, B, LDB,
$ RNK, IPVT, CS, TOL, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To bring the first blocks of a generator to proper form.
C The positive part of the generator is contained in the arrays A1
C and A2. The negative part of the generator is contained in B.
C Transformation information will be stored and can be applied
C via SLICOT Library routine MB02CV.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPEG CHARACTER*1
C Specifies the type of the generator, as follows:
C = 'D': generator is column oriented and rank
C deficiencies are expected;
C = 'C': generator is column oriented and rank
C deficiencies are not expected;
C = 'R': generator is row oriented and rank
C deficiencies are not expected.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows in A1 to be processed. K >= 0.
C
C P (input) INTEGER
C The number of columns of the positive generator. P >= K.
C
C Q (input) INTEGER
C The number of columns in B containing the negative
C generators.
C If TYPEG = 'D', Q >= K;
C If TYPEG = 'C' or 'R', Q >= 0.
C
C NB (input) INTEGER
C On entry, if TYPEG = 'C' or TYPEG = 'R', NB specifies
C the block size to be used in the blocked parts of the
C algorithm. If NB <= 0, an unblocked algorithm is used.
C
C A1 (input/output) DOUBLE PRECISION array, dimension
C (LDA1, K)
C On entry, the leading K-by-K part of this array must
C contain the leading submatrix of the positive part of the
C generator. If TYPEG = 'C', A1 is assumed to be lower
C triangular and the strictly upper triangular part is not
C referenced. If TYPEG = 'R', A1 is assumed to be upper
C triangular and the strictly lower triangular part is not
C referenced.
C On exit, if TYPEG = 'D', the leading K-by-RNK part of this
C array contains the lower trapezoidal part of the proper
C generator and information for the Householder
C transformations applied during the reduction process.
C On exit, if TYPEG = 'C', the leading K-by-K part of this
C array contains the leading lower triangular part of the
C proper generator.
C On exit, if TYPEG = 'R', the leading K-by-K part of this
C array contains the leading upper triangular part of the
C proper generator.
C
C LDA1 INTEGER
C The leading dimension of the array A1. LDA1 >= MAX(1,K).
C
C A2 (input/output) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDA2, P-K);
C if TYPEG = 'R', dimension (LDA2, K).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-(P-K) part of this array must contain the (K+1)-st
C to P-th columns of the positive part of the generator.
C On entry, if TYPEG = 'R', the leading (P-K)-by-K part of
C this array must contain the (K+1)-st to P-th rows of the
C positive part of the generator.
C On exit, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-(P-K) part of this array contains information for
C Householder transformations.
C On exit, if TYPEG = 'R', the leading (P-K)-by-K part of
C this array contains information for Householder
C transformations.
C
C LDA2 INTEGER
C The leading dimension of the array A2.
C If P = K, LDA2 >= 1;
C If P > K and (TYPEG = 'D' or TYPEG = 'C'),
C LDA2 >= MAX(1,K);
C if P > K and TYPEG = 'R', LDA2 >= P-K.
C
C B (input/output) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDB, Q);
C if TYPEG = 'R', dimension (LDB, K).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-Q part of this array must contain the negative part
C of the generator.
C On entry, if TYPEG = 'R', the leading Q-by-K part of this
C array must contain the negative part of the generator.
C On exit, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-Q part of this array contains information for
C Householder transformations.
C On exit, if TYPEG = 'R', the leading Q-by-K part of this
C array contains information for Householder transformations.
C
C LDB INTEGER
C The leading dimension of the array B.
C If Q = 0, LDB >= 1;
C if Q > 0 and (TYPEG = 'D' or TYPEG = 'C'),
C LDB >= MAX(1,K);
C if Q > 0 and TYPEG = 'R', LDB >= Q.
C
C RNK (output) INTEGER
C If TYPEG = 'D', the number of columns in the reduced
C generator which are found to be linearly independent.
C If TYPEG = 'C' or TYPEG = 'R', then RNK is not set.
C
C IPVT (output) INTEGER array, dimension (K)
C If TYPEG = 'D', then if IPVT(i) = k, the k-th row of the
C proper generator is the reduced i-th row of the input
C generator.
C If TYPEG = 'C' or TYPEG = 'R', this array is not
C referenced.
C
C CS (output) DOUBLE PRECISION array, dimension (x)
C If TYPEG = 'D' and P = K, x = 3*K;
C if TYPEG = 'D' and P > K, x = 5*K;
C if (TYPEG = 'C' or TYPEG = 'R') and P = K, x = 4*K;
C if (TYPEG = 'C' or TYPEG = 'R') and P > K, x = 6*K.
C On exit, the first x elements of this array contain
C necessary information for the SLICOT library routine
C MB02CV (Givens and modified hyperbolic rotation
C parameters, scalar factors of the Householder
C transformations).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If TYPEG = 'D', this number specifies the used tolerance
C for handling deficiencies. If the hyperbolic norm
C of two diagonal elements in the positive and negative
C generators appears to be less than or equal to TOL, then
C the corresponding columns are not reduced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = -17, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,4*K), if TYPEG = 'D';
C LDWORK >= MAX(1,MAX(NB,1)*K), if TYPEG = 'C' or 'R'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if TYPEG = 'D', the generator represents a
C (numerically) indefinite matrix; and if TYPEG = 'C'
C or TYPEG = 'R', the generator represents a
C (numerically) semidefinite matrix.
C
C METHOD
C
C If TYPEG = 'C' or TYPEG = 'R', blocked Householder transformations
C and modified hyperbolic rotations are used to downdate the
C matrix [ A1 A2 sqrt(-1)*B ], cf. [1], [2].
C If TYPEG = 'D', then an algorithm with row pivoting is used. In
C the first stage it maximizes the hyperbolic norm of the active
C row. As soon as the hyperbolic norm is below the threshold TOL,
C the strategy is changed. Now, in the second stage, the algorithm
C applies an LQ decomposition with row pivoting on B such that
C the Euclidean norm of the active row is maximized.
C
C REFERENCES
C
C [1] Kailath, T. and Sayed, A.
C Fast Reliable Algorithms for Matrices with Structure.
C SIAM Publications, Philadelphia, 1999.
C
C [2] Kressner, D. and Van Dooren, P.
C Factorizations and linear system solvers for matrices with
C Toeplitz structure.
C SLICOT Working Note 2000-2, 2000.
C
C NUMERICAL ASPECTS
C 2
C The algorithm requires 0(K *( P + Q )) floating point operations.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C D. Kressner, Technical Univ. Berlin, Germany, July 2002.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, P05
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, P05 = 0.05D0 )
C .. Scalar Arguments ..
CHARACTER TYPEG
INTEGER INFO, K, LDA1, LDA2, LDB, LDWORK, NB, P, Q, RNK
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IPVT(*)
DOUBLE PRECISION A1(LDA1,*), A2(LDA2,*), B(LDB,*), CS(*),
$ DWORK(*)
C .. Local Scalars ..
LOGICAL LCOL, LRDEF
INTEGER COL2, I, IB, IERR, IMAX, ITEMP, J, JJ, LEN,
$ NBL, PDW, PHV, POS, PST2, PVT, WRKMIN
DOUBLE PRECISION ALPHA, ALPHA2, BETA, C, DMAX, S, TAU1, TAU2,
$ TEMP, TEMP2
C .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAPY2, DNRM2
EXTERNAL IDAMAX, DLAPY2, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DGELQ2, DGEQR2, DLARF, DLARFB, DLARFG,
$ DLARFT, DLARTG, DROT, DSCAL, DSWAP, MA02FD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SIGN, SQRT
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
COL2 = P - K
LRDEF = LSAME( TYPEG, 'D' )
LCOL = LSAME( TYPEG, 'C' )
IF ( LRDEF ) THEN
WRKMIN = MAX( 1, 4*K )
ELSE
WRKMIN = MAX( 1, NB*K, K )
END IF
C
C Check the scalar input parameters.
C
IF ( .NOT.( LCOL .OR. LRDEF .OR. LSAME( TYPEG, 'R' ) ) ) THEN
INFO = -1
ELSE IF ( K.LT.0 ) THEN
INFO = -2
ELSE IF ( P.LT.K ) THEN
INFO = -3
ELSE IF ( Q.LT.0 .OR. ( LRDEF .AND. Q.LT.K ) ) THEN
INFO = -4
ELSE IF ( LDA1.LT.MAX( 1, K ) ) THEN
INFO = -7
ELSE IF ( ( ( P.EQ.K ) .AND. LDA2.LT.1 ) .OR.
$ ( ( P.GT.K ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDA2.LT.MAX( 1, K ) ) ) .OR.
$ ( ( P.GT.K ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDA2.LT.( P - K ) ) ) ) THEN
INFO = -9
ELSE IF ( ( ( Q.EQ.0 ) .AND. LDB.LT.1 ) .OR.
$ ( ( Q.GT.0 ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDB.LT.MAX( 1, K ) ) ) .OR.
$ ( ( Q.GT.0 ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDB.LT.Q ) ) ) THEN
INFO = -11
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
DWORK(1) = DBLE( WRKMIN )
INFO = -17
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02CU', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( K.EQ.0 .OR. ( .NOT.LRDEF .AND. Q.EQ.0 .AND. P.EQ.K ) ) THEN
IF ( LRDEF )
$ RNK = 0
RETURN
END IF
C
IF ( LRDEF ) THEN
C
C Deficient generator.
C
IF ( COL2.EQ.0 ) THEN
PST2 = 2*K
ELSE
PST2 = 4*K
END IF
C
C Initialize partial hyperbolic row norms.
C
RNK = 0
PHV = 3*K
C
DO 10 I = 1, K
IPVT(I) = I
DWORK(I) = DNRM2( K, A1(I,1), LDA1 )
10 CONTINUE
C
DO 20 I = 1, K
DWORK(I) = DLAPY2( DWORK(I),
$ DNRM2( COL2, A2(I,1), LDA2 ) )
DWORK(I+K) = DWORK(I)
20 CONTINUE
C
PDW = 2*K
C
DO 30 I = 1, K
PDW = PDW + 1
DWORK(PDW) = DNRM2( Q, B(I,1), LDB )
30 CONTINUE
C
C Compute factorization.
C
DO 90 I = 1, K
C
C Determine pivot row and swap if necessary.
C
PDW = I
ALPHA = ABS( DWORK(PDW) )
BETA = ABS( DWORK(PDW+2*K) )
DMAX = SIGN( SQRT( ABS( ALPHA - BETA ) )*
$ SQRT( ALPHA + BETA ), ALPHA - BETA )
IMAX = I
C
DO 40 J = 1, K - I
PDW = PDW + 1
ALPHA = ABS( DWORK(PDW) )
BETA = ABS ( DWORK(PDW+2*K) )
TEMP = SIGN( SQRT( ABS( ALPHA - BETA ) )*
$ SQRT( ALPHA + BETA ), ALPHA - BETA )
IF ( TEMP.GT.DMAX ) THEN
IMAX = I + J
DMAX = TEMP
END IF
40 CONTINUE
C
C Proceed with the reduction if the hyperbolic norm is
C beyond the threshold.
C
IF ( DMAX.GT.TOL ) THEN
C
PVT = IMAX
IF ( PVT.NE.I ) THEN
CALL DSWAP( K, A1(PVT,1), LDA1, A1(I,1), LDA1 )
CALL DSWAP( COL2, A2(PVT,1), LDA2, A2(I,1), LDA2 )
CALL DSWAP( Q, B(PVT,1), LDB, B(I,1), LDB )
ITEMP = IPVT(PVT)
IPVT(PVT) = IPVT(I)
IPVT(I) = ITEMP
DWORK(PVT) = DWORK(I)
DWORK(K+PVT) = DWORK(K+I)
DWORK(2*K+PVT) = DWORK(2*K+I)
END IF
C
C Generate and apply elementary reflectors.
C
IF ( COL2.GT.1 ) THEN
CALL DLARFG( COL2, A2(I,1), A2(I,2), LDA2, TAU2 )
ALPHA2 = A2(I,1)
IF ( K.GT.I ) THEN
A2(I,1) = ONE
CALL DLARF( 'Right', K-I, COL2, A2(I,1), LDA2,
$ TAU2, A2(I+1,1), LDA2, DWORK(PHV+1) )
END IF
A2(I,1) = TAU2
ELSE IF ( COL2.GT.0 ) THEN
ALPHA2 = A2(I,1)
A2(I,1) = ZERO
END IF
C
IF ( K.GT.I ) THEN
CALL DLARFG( K-I+1, A1(I,I), A1(I,I+1), LDA1, TAU1 )
ALPHA = A1(I,I)
A1(I,I) = ONE
CALL DLARF( 'Right', K-I, K-I+1, A1(I,I), LDA1, TAU1,
$ A1(I+1,I), LDA1, DWORK(PHV+1) )
CS(PST2+I) = TAU1
ELSE
ALPHA = A1(I,I)
END IF
C
IF ( COL2.GT.0 ) THEN
TEMP = ALPHA
CALL DLARTG( TEMP, ALPHA2, C, S, ALPHA )
IF ( K.GT.I )
$ CALL DROT( K-I, A1(I+1,I), 1, A2(I+1,1), 1, C, S )
CS(2*K+I*2-1) = C
CS(2*K+I*2) = S
END IF
A1(I,I) = ALPHA
C
IF ( Q.GT.1 ) THEN
CALL DLARFG( Q, B(I,1), B(I,2), LDB, TAU2 )
BETA = B(I,1)
IF ( K.GT.I ) THEN
B(I,1) = ONE
CALL DLARF( 'Right', K-I, Q, B(I,1), LDB, TAU2,
$ B(I+1,1), LDB, DWORK(PHV+1) )
END IF
B(I,1) = TAU2
ELSE IF ( Q.GT.0 ) THEN
BETA = B(I,1)
B(I,1) = ZERO
ELSE
BETA = ZERO
END IF
C
C Create hyperbolic Givens rotation.
C
CALL MA02FD( A1(I,I), BETA, C, S, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: This should not happen.
C
INFO = 1
RETURN
END IF
C
C Apply hyperbolic rotation.
C
IF ( K.GT.I ) THEN
CALL DSCAL( K-I, ONE/C, A1(I+1,I), 1 )
CALL DAXPY( K-I, -S/C, B(I+1,1), 1, A1(I+1,I), 1 )
CALL DSCAL( K-I, C, B(I+1,1), 1 )
CALL DAXPY( K-I, -S, A1(I+1,I), 1, B(I+1,1), 1 )
END IF
CS(I*2-1) = C
CS(I*2) = S
C
C Downdate the norms in A1.
C
DO 50 J = I + 1, K
TEMP = ONE - ( ABS( A1(J,I) ) / DWORK(J) )**2
TEMP2 = ONE + P05*TEMP*
$ ( DWORK(J) / DWORK(K+J) )**2
IF ( TEMP2.EQ.ONE ) THEN
DWORK(J) = DLAPY2( DNRM2( K-I, A1(J,I+1), LDA1 ),
$ DNRM2( COL2, A2(J,1), LDA2 ) )
DWORK(K+J) = DWORK(J)
DWORK(2*K+J) = DNRM2( Q, B(J,1), LDB )
ELSE
IF ( TEMP.GE.ZERO ) THEN
DWORK(J) = DWORK(J)*SQRT( TEMP )
ELSE
DWORK(J) = -DWORK(J)*SQRT( -TEMP )
END IF
END IF
50 CONTINUE
C
RNK = RNK + 1
ELSE IF ( ABS( DMAX ).LT.TOL ) THEN
C
C Displacement is positive semidefinite.
C Do an LQ decomposition with pivoting of the leftover
C negative part to find diagonal elements with almost zero
C norm. These columns cannot be removed from the
C generator.
C
C Initialize norms.
C
DO 60 J = I, K
DWORK(J) = DNRM2( Q, B(J,1), LDB )
DWORK(J+K) = DWORK(J)
60 CONTINUE
C
LEN = Q
POS = 1
C
DO 80 J = I, K
C
C Generate and apply elementary reflectors.
C
PVT = ( J-1 ) + IDAMAX( K-J+1, DWORK(J), 1 )
C
C Swap rows if necessary.
C
IF ( PVT.NE.J ) THEN
CALL DSWAP( K, A1(PVT,1), LDA1, A1(J,1), LDA1 )
CALL DSWAP( COL2, A2(PVT,1), LDA2, A2(J,1), LDA2 )
CALL DSWAP( Q, B(PVT,1), LDB, B(J,1), LDB )
ITEMP = IPVT(PVT)
IPVT(PVT) = IPVT(J)
IPVT(J) = ITEMP
DWORK(PVT) = DWORK(J)
DWORK(K+PVT) = DWORK(K+J)
END IF
C
C Annihilate second part of the positive generators.
C
IF ( COL2.GT.1 ) THEN
CALL DLARFG( COL2, A2(J,1), A2(J,2), LDA2, TAU2 )
ALPHA2 = A2(J,1)
IF ( K.GT.J ) THEN
A2(J,1) = ONE
CALL DLARF( 'Right', K-J, COL2, A2(J,1), LDA2,
$ TAU2, A2(J+1,1), LDA2, DWORK(PHV+1))
END IF
A2(J,1) = TAU2
ELSE IF ( COL2.GT.0 ) THEN
ALPHA2 = A2(J,1)
A2(J,1) = ZERO
END IF
C
C Transform first part of the positive generators to
C lower triangular form.
C
IF ( K.GT.J ) THEN
CALL DLARFG( K-J+1, A1(J,J), A1(J,J+1), LDA1,
$ TAU1 )
ALPHA = A1(J,J)
A1(J,J) = ONE
CALL DLARF( 'Right', K-J, K-J+1, A1(J,J), LDA1,
$ TAU1, A1(J+1,J), LDA1, DWORK(PHV+1) )
CS(PST2+J) = TAU1
ELSE
ALPHA = A1(J,J)
END IF
C
IF ( COL2.GT.0 ) THEN
TEMP = ALPHA
CALL DLARTG( TEMP, ALPHA2, C, S, ALPHA )
IF ( K.GT.J )
$ CALL DROT( K-J, A1(J+1,J), 1, A2(J+1,1), 1, C,
$ S )
CS(2*K+J*2-1) = C
CS(2*K+J*2) = S
END IF
A1(J,J) = ALPHA
C
C Transform negative part to lower triangular form.
C
IF ( LEN.GT.1) THEN
CALL DLARFG( LEN, B(J,POS), B(J,POS+1), LDB, TAU2 )
BETA = B(J,POS)
IF ( K.GT.J ) THEN
B(J,POS) = ONE
CALL DLARF( 'Right', K-J, LEN, B(J,POS), LDB,
$ TAU2, B(J+1,POS), LDB, DWORK(PHV+1))
END IF
B(J,POS) = BETA
CS(J*2-1) = TAU2
END IF
C
C Downdate the norms of the rows in the negative part.
C
DO 70 JJ = J + 1, K
IF ( DWORK(JJ).NE.ZERO ) THEN
TEMP = ONE - ( ABS( B(JJ,POS) )
$ / DWORK(JJ) )**2
TEMP = MAX( TEMP, ZERO )
TEMP2 = ONE + P05*TEMP*
$ ( DWORK(JJ) / DWORK(K+JJ) )**2
IF ( TEMP2.EQ.ONE ) THEN
DWORK(JJ) = DNRM2( LEN-1, B(JJ,POS+1), LDB)
DWORK(K+JJ) = DWORK(JJ)
ELSE
IF ( TEMP.GE.ZERO ) THEN
DWORK(JJ) = DWORK(JJ)*SQRT( TEMP )
ELSE
DWORK(JJ) = -DWORK(JJ)*SQRT( -TEMP )
END IF
END IF
END IF
70 CONTINUE
C
LEN = LEN - 1
POS = POS + 1
80 CONTINUE
C
RETURN
ELSE
C
C Error return:
C
C Displacement is indefinite.
C Due to roundoff error, positive semidefiniteness is
C violated. This is a rather bad situation. There is no
C meaningful way to continue the computations from this
C point.
C
INFO = 1
RETURN
END IF
90 CONTINUE
C
ELSE IF ( LCOL ) THEN
C
C Column oriented and not deficient generator.
C
C Apply an LQ like hyperbolic/orthogonal blocked decomposition.
C
IF ( COL2.GT.0 ) THEN
NBL = MIN( COL2, NB )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 110 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DGELQ2( IB, COL2, A2(I,1), LDA2, CS(4*K+I),
$ DWORK, IERR )
IF ( I+IB.LE.K ) THEN
CALL DLARFT( 'Forward', 'Rowwise', COL2, IB,
$ A2(I,1), LDA2, CS(4*K+I), DWORK, K )
CALL DLARFB( 'Right', 'No Transpose', 'Forward',
$ 'Rowwise', K-I-IB+1, COL2, IB,
$ A2(I,1), LDA2, DWORK, K, A2(I+IB,1),
$ LDA2, DWORK(IB+1), K )
END IF
C
C Annihilate the remaining parts of A2.
C
DO 100 J = I, I + IB - 1
IF ( COL2.GT.1 ) THEN
LEN = MIN( COL2, J-I+1 )
CALL DLARFG( LEN, A2(J,1), A2(J,2), LDA2, TAU2 )
ALPHA2 = A2(J,1)
IF ( K.GT.J ) THEN
A2(J,1) = ONE
CALL DLARF( 'Right', K-J, LEN, A2(J,1), LDA2,
$ TAU2, A2(J+1,1), LDA2, DWORK )
END IF
A2(J,1) = TAU2
ELSE
ALPHA2 = A2(J,1)
A2(J,1) = ZERO
END IF
ALPHA = A1(J,J)
CALL DLARTG( ALPHA, ALPHA2, C, S, A1(J,J) )
IF ( K.GT.J )
$ CALL DROT( K-J, A1(J+1,J), 1, A2(J+1,1), 1, C,
$ S )
CS(2*K+J*2-1) = C
CS(2*K+J*2) = S
100 CONTINUE
C
110 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 120 J = I, K
IF ( COL2.GT.1 ) THEN
CALL DLARFG( COL2, A2(J,1), A2(J,2), LDA2, TAU2 )
ALPHA2 = A2(J,1)
IF ( K.GT.J ) THEN
A2(J,1) = ONE
CALL DLARF( 'Right', K-J, COL2, A2(J,1), LDA2,
$ TAU2, A2(J+1,1), LDA2, DWORK )
END IF
A2(J,1) = TAU2
ELSE
ALPHA2 = A2(J,1)
A2(J,1) = ZERO
END IF
ALPHA = A1(J,J)
CALL DLARTG( ALPHA, ALPHA2, C, S, A1(J,J) )
IF ( K.GT.J )
$ CALL DROT( K-J, A1(J+1,J), 1, A2(J+1,1), 1, C, S )
CS(2*K+J*2-1) = C
CS(2*K+J*2) = S
120 CONTINUE
C
PST2 = 5*K
ELSE
PST2 = 2*K
END IF
C
C Annihilate B with hyperbolic transformations.
C
NBL = MIN( NB, Q )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 140 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DGELQ2( IB, Q, B(I,1), LDB, CS(PST2+I), DWORK,
$ IERR )
IF ( I+IB.LE.K ) THEN
CALL DLARFT( 'Forward', 'Rowwise', Q, IB, B(I,1),
$ LDB, CS(PST2+I), DWORK, K )
CALL DLARFB( 'Right', 'No Transpose', 'Forward',
$ 'Rowwise', K-I-IB+1, Q, IB, B(I,1),
$ LDB, DWORK, K, B(I+IB,1), LDB,
$ DWORK( IB+1 ), K )
END IF
C
C Annihilate the remaining parts of B.
C
DO 130 J = I, I + IB - 1
IF ( Q.GT.1 ) THEN
CALL DLARFG( J-I+1, B(J,1), B(J,2), LDB, TAU2 )
ALPHA2 = B(J,1)
IF ( K.GT.J ) THEN
B(J,1) = ONE
CALL DLARF( 'Right', K-J, J-I+1, B(J,1), LDB,
$ TAU2, B(J+1,1), LDB, DWORK )
END IF
B(J,1) = TAU2
ELSE
ALPHA2 = B(J,1)
B(J,1) = ZERO
END IF
C
C Create hyperbolic rotation.
C
CALL MA02FD( A1(J,J), ALPHA2, C, S, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
C Apply hyperbolic rotation.
C
IF ( K.GT.J ) THEN
CALL DSCAL( K-J, ONE/C, A1(J+1,J), 1 )
CALL DAXPY( K-J, -S/C, B(J+1,1), 1, A1(J+1,J), 1 )
CALL DSCAL( K-J, C, B(J+1,1), 1 )
CALL DAXPY( K-J, -S, A1(J+1,J), 1, B(J+1,1), 1 )
END IF
CS(J*2-1) = C
CS(J*2) = S
130 CONTINUE
C
140 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 150 J = I, K
IF ( Q.GT.1 ) THEN
CALL DLARFG( Q, B(J,1), B(J,2), LDB, TAU2 )
ALPHA2 = B(J,1)
IF ( K.GT.J ) THEN
B(J,1) = ONE
CALL DLARF( 'Right', K-J, Q, B(J,1), LDB, TAU2,
$ B(J+1,1), LDB, DWORK )
END IF
B(J,1) = TAU2
ELSE IF ( Q.GT.0 ) THEN
ALPHA2 = B(J,1)
B(J,1) = ZERO
END IF
IF ( Q.GT.0 ) THEN
C
C Create hyperbolic rotation.
C
CALL MA02FD( A1(J,J), ALPHA2, C, S, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
C Apply hyperbolic rotation.
C
IF ( K.GT.J ) THEN
CALL DSCAL( K-J, ONE/C, A1(J+1,J), 1 )
CALL DAXPY( K-J, -S/C, B(J+1,1), 1, A1(J+1,J), 1 )
CALL DSCAL( K-J, C, B(J+1,1), 1 )
CALL DAXPY( K-J, -S, A1(J+1,J), 1, B(J+1,1), 1 )
END IF
CS(J*2-1) = C
CS(J*2) = S
END IF
150 CONTINUE
C
ELSE
C
C Row oriented and not deficient generator.
C
IF ( COL2.GT.0 ) THEN
NBL = MIN( NB, COL2 )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 170 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DGEQR2( COL2, IB, A2(1,I), LDA2, CS(4*K+I),
$ DWORK, IERR )
IF ( I+IB.LE.K ) THEN
CALL DLARFT( 'Forward', 'Columnwise', COL2, IB,
$ A2(1,I), LDA2, CS(4*K+I), DWORK, K )
CALL DLARFB( 'Left', 'Transpose', 'Forward',
$ 'Columnwise', COL2, K-I-IB+1, IB,
$ A2(1,I), LDA2, DWORK, K, A2(1,I+IB),
$ LDA2, DWORK(IB+1), K )
END IF
C
C Annihilate the remaining parts of A2.
C
DO 160 J = I, I + IB - 1
IF ( COL2.GT.1 ) THEN
LEN = MIN( COL2, J-I+1 )
CALL DLARFG( LEN, A2(1,J), A2(2,J), 1, TAU2 )
ALPHA2 = A2(1,J)
IF ( K.GT.J ) THEN
A2(1,J) = ONE
CALL DLARF( 'Left', LEN, K-J, A2(1,J), 1,
$ TAU2, A2(1,J+1), LDA2, DWORK )
END IF
A2(1,J) = TAU2
ELSE
ALPHA2 = A2(1,J)
A2(1,J) = ZERO
END IF
ALPHA = A1(J,J)
CALL DLARTG( ALPHA, ALPHA2, C, S, A1(J,J) )
IF ( K.GT.J )
$ CALL DROT( K-J, A1(J,J+1), LDA1, A2(1,J+1),
$ LDA2, C, S )
CS(2*K+J*2-1) = C
CS(2*K+J*2) = S
160 CONTINUE
C
170 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 180 J = I, K
IF ( COL2.GT.1 ) THEN
CALL DLARFG( COL2, A2(1,J), A2(2,J), 1, TAU2 )
ALPHA2 = A2(1,J)
IF ( K.GT.J ) THEN
A2(1,J) = ONE
CALL DLARF( 'Left', COL2, K-J, A2(1,J), 1, TAU2,
$ A2(1,J+1), LDA2, DWORK )
END IF
A2(1,J) = TAU2
ELSE
ALPHA2 = A2(1,J)
A2(1,J) = ZERO
END IF
ALPHA = A1(J,J)
CALL DLARTG( ALPHA, ALPHA2, C, S, A1(J,J) )
IF ( K.GT.J )
$ CALL DROT( K-J, A1(J,J+1), LDA1, A2(1,J+1), LDA2, C,
$ S )
CS(2*K+J*2-1) = C
CS(2*K+J*2) = S
180 CONTINUE
C
PST2 = 5*K
ELSE
PST2 = 2*K
END IF
C
C Annihilate B with hyperbolic transformations.
C
NBL = MIN( NB, Q )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 200 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DGEQR2( Q, IB, B(1,I), LDB, CS(PST2+I), DWORK,
$ IERR )
IF ( I+IB.LE.K ) THEN
CALL DLARFT( 'Forward', 'Columnwise', Q, IB, B(1,I),
$ LDB, CS(PST2+I), DWORK, K )
CALL DLARFB( 'Left', 'Transpose', 'Forward',
$ 'Columnwise', Q, K-I-IB+1, IB, B(1,I),
$ LDB, DWORK, K, B(1,I+IB), LDB,
$ DWORK( IB+1 ), K )
END IF
C
C Annihilate the remaining parts of B.
C
DO 190 J = I, I + IB - 1
IF ( Q.GT.1 ) THEN
CALL DLARFG( J-I+1, B(1,J), B(2,J), 1, TAU2 )
ALPHA2 = B(1,J)
IF ( K.GT.J ) THEN
B(1,J) = ONE
CALL DLARF( 'Left', J-I+1, K-J, B(1,J), 1,
$ TAU2, B(1,J+1), LDB, DWORK )
END IF
B(1,J) = TAU2
ELSE
ALPHA2 = B(1,J)
B(1,J) = ZERO
END IF
C
C Create hyperbolic rotation.
C
CALL MA02FD( A1(J,J), ALPHA2, C, S, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
C Apply hyperbolic rotation.
C
IF ( K.GT.J ) THEN
CALL DSCAL( K-J, ONE/C, A1(J,J+1), LDA1 )
CALL DAXPY( K-J, -S/C, B(1,J+1), LDB, A1(J,J+1),
$ LDA1 )
CALL DSCAL( K-J, C, B(1,J+1), LDB )
CALL DAXPY( K-J, -S, A1(J,J+1), LDA1, B(1,J+1),
$ LDB )
END IF
CS(J*2-1) = C
CS(J*2) = S
190 CONTINUE
C
200 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 210 J = I, K
IF ( Q.GT.1 ) THEN
CALL DLARFG( Q, B(1,J), B(2,J), 1, TAU2 )
ALPHA2 = B(1,J)
IF ( K.GT.J ) THEN
B(1,J) = ONE
CALL DLARF( 'Left', Q, K-J, B(1,J), 1, TAU2,
$ B(1,J+1), LDB, DWORK )
END IF
B(1,J) = TAU2
ELSE IF ( Q.GT.0 ) THEN
ALPHA2 = B(1,J)
B(1,J) = ZERO
END IF
IF ( Q.GT.0 ) THEN
C
C Create hyperbolic rotation.
C
CALL MA02FD( A1(J,J), ALPHA2, C, S, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
C Apply hyperbolic rotation.
C
IF ( K.GT.J ) THEN
CALL DSCAL( K-J, ONE/C, A1(J,J+1), LDA1 )
CALL DAXPY( K-J, -S/C, B(1,J+1), LDB, A1(J,J+1), LDA1
$ )
CALL DSCAL( K-J, C, B(1,J+1), LDB )
CALL DAXPY( K-J, -S, A1(J,J+1), LDA1, B(1,J+1), LDB
$ )
END IF
CS(J*2-1) = C
CS(J*2) = S
END IF
210 CONTINUE
C
END IF
C
C *** Last line of MB02CU ***
END
|