1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
SUBROUTINE MB02CV( TYPEG, STRUCG, K, N, P, Q, NB, RNK, A1, LDA1,
$ A2, LDA2, B, LDB, F1, LDF1, F2, LDF2, G, LDG,
$ CS, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To apply the transformations created by the SLICOT Library routine
C MB02CU on other columns / rows of the generator, contained in the
C arrays F1, F2 and G.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPEG CHARACTER*1
C Specifies the type of the generator, as follows:
C = 'D': generator is column oriented and rank
C deficient;
C = 'C': generator is column oriented and not rank
C deficient;
C = 'R': generator is row oriented and not rank
C deficient.
C Note that this parameter must be equivalent with the
C used TYPEG in the call of MB02CU.
C
C STRUCG CHARACTER*1
C Information about the structure of the generators,
C as follows:
C = 'T': the trailing block of the positive generator
C is upper / lower triangular, and the trailing
C block of the negative generator is zero;
C = 'N': no special structure to mention.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows in A1 to be processed. K >= 0.
C
C N (input) INTEGER
C If TYPEG = 'D' or TYPEG = 'C', the number of rows in F1;
C if TYPEG = 'R', the number of columns in F1. N >= 0.
C
C P (input) INTEGER
C The number of columns of the positive generator. P >= K.
C
C Q (input) INTEGER
C The number of columns in B.
C If TYPEG = 'D', Q >= K;
C If TYPEG = 'C' or 'R', Q >= 0.
C
C NB (input) INTEGER
C On entry, if TYPEG = 'C' or TYPEG = 'R', NB specifies
C the block size to be used in the blocked parts of the
C algorithm. NB must be equivalent with the used block size
C in the routine MB02CU.
C
C RNK (input) INTEGER
C If TYPEG = 'D', the number of linearly independent columns
C in the generator as returned by MB02CU. 0 <= RNK <= K.
C If TYPEG = 'C' or 'R', the value of this parameter is
C irrelevant.
C
C A1 (input) DOUBLE PRECISION array, dimension
C (LDA1, K)
C On entry, if TYPEG = 'D', the leading K-by-K part of this
C array must contain the matrix A1 as returned by MB02CU.
C If TYPEG = 'C' or 'R', this array is not referenced.
C
C LDA1 INTEGER
C The leading dimension of the array A1.
C If TYPEG = 'D', LDA1 >= MAX(1,K);
C if TYPEG = 'C' or TYPEG = 'R', LDA1 >= 1.
C
C A2 (input) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDA2, P-K);
C if TYPEG = 'R', dimension (LDA2, K).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-(P-K) part of this array must contain the matrix
C A2 as returned by MB02CU.
C On entry, if TYPEG = 'R', the leading (P-K)-by-K part of
C this array must contain the matrix A2 as returned by
C MB02CU.
C
C LDA2 INTEGER
C The leading dimension of the array A2.
C If P = K, LDA2 >= 1;
C If P > K and (TYPEG = 'D' or TYPEG = 'C'),
C LDA2 >= MAX(1,K);
C if P > K and TYPEG = 'R', LDA2 >= P-K.
C
C B (input) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDB, Q);
C if TYPEG = 'R', dimension (LDB, K).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C K-by-Q part of this array must contain the matrix B as
C returned by MB02CU.
C On entry, if TYPEG = 'R', the leading Q-by-K part of this
C array must contain the matrix B as returned by MB02CU.
C
C LDB INTEGER
C The leading dimension of the array B.
C If Q = 0, LDB >= 1;
C If Q > 0 and (TYPEG = 'D' or TYPEG = 'C'),
C LDB >= MAX(1,K);
C if Q > 0 and TYPEG = 'R', LDB >= Q.
C
C F1 (input/output) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDF1, K);
C if TYPEG = 'R', dimension (LDF1, N).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-K part of this array must contain the first part
C of the positive generator to be processed.
C On entry, if TYPEG = 'R', the leading K-by-N part of this
C array must contain the first part of the positive
C generator to be processed.
C On exit, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-K part of this array contains the first part of the
C transformed positive generator.
C On exit, if TYPEG = 'R', the leading K-by-N part of this
C array contains the first part of the transformed positive
C generator.
C
C LDF1 INTEGER
C The leading dimension of the array F1.
C If TYPEG = 'D' or TYPEG = 'C', LDF1 >= MAX(1,N);
C if TYPEG = 'R', LDF1 >= MAX(1,K).
C
C F2 (input/output) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDF2, P-K);
C if TYPEG = 'R', dimension (LDF2, N).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-(P-K) part of this array must contain the second part
C of the positive generator to be processed.
C On entry, if TYPEG = 'R', the leading (P-K)-by-N part of
C this array must contain the second part of the positive
C generator to be processed.
C On exit, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-(P-K) part of this array contains the second part of
C the transformed positive generator.
C On exit, if TYPEG = 'R', the leading (P-K)-by-N part of
C this array contains the second part of the transformed
C positive generator.
C
C LDF2 INTEGER
C The leading dimension of the array F2.
C If P = K, LDF2 >= 1;
C If P > K and (TYPEG = 'D' or TYPEG = 'C'),
C LDF2 >= MAX(1,N);
C if P > K and TYPEG = 'R', LDF2 >= P-K.
C
C G (input/output) DOUBLE PRECISION array,
C if TYPEG = 'D' or TYPEG = 'C', dimension (LDG, Q);
C if TYPEG = 'R', dimension (LDG, N).
C On entry, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-Q part of this array must contain the negative part
C of the generator to be processed.
C On entry, if TYPEG = 'R', the leading Q-by-N part of this
C array must contain the negative part of the generator to
C be processed.
C On exit, if TYPEG = 'D' or TYPEG = 'C', the leading
C N-by-Q part of this array contains the transformed
C negative generator.
C On exit, if TYPEG = 'R', the leading Q-by-N part of this
C array contains the transformed negative generator.
C
C LDG INTEGER
C The leading dimension of the array G.
C If Q = 0, LDG >= 1;
C If Q > 0 and (TYPEG = 'D' or TYPEG = 'C'),
C LDG >= MAX(1,N);
C if Q > 0 and TYPEG = 'R', LDG >= Q.
C
C CS (input) DOUBLE PRECISION array, dimension (x)
C If TYPEG = 'D' and P = K, x = 3*K;
C If TYPEG = 'D' and P > K, x = 5*K;
C If (TYPEG = 'C' or TYPEG = 'R') and P = K, x = 4*K;
C If (TYPEG = 'C' or TYPEG = 'R') and P > K, x = 6*K.
C On entry, the first x elements of this array must contain
C Givens and modified hyperbolic rotation parameters, and
C scalar factors of the Householder transformations as
C returned by MB02CU.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = -23, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C TYPEG = 'D': LDWORK >= MAX(1,N);
C (TYPEG = 'C' or TYPEG = 'R') and NB <= 0:
C LDWORK >= MAX(1,N);
C (TYPEG = 'C' or TYPEG = 'R') and NB >= 1:
C LDWORK >= MAX(1,( N + K )*NB).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C NUMERICAL ASPECTS
C
C The algorithm requires 0(N*K*( P + Q )) floating point operations.
C
C METHOD
C
C The Householder transformations and modified hyperbolic rotations
C computed by SLICOT Library routine MB02CU are applied to the
C corresponding parts of the matrices F1, F2 and G.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, June 2001,
C March 2004, March 2007.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C .. Scalar Arguments ..
CHARACTER STRUCG, TYPEG
INTEGER INFO, K, LDA1, LDA2, LDB, LDF1, LDF2, LDG,
$ LDWORK, N, NB, P, Q, RNK
C .. Array Arguments ..
DOUBLE PRECISION A1(LDA1,*), A2(LDA2,*), B(LDB,*), CS(*),
$ DWORK(*), F1(LDF1,*), F2(LDF2,*), G(LDG,*)
C .. Local Scalars ..
INTEGER COL2, I, IB, J, JJ, LEN, NBL, POS, PST2,
$ WRKMIN
DOUBLE PRECISION ALPHA, BETA, C, S, TAU, TEMP
LOGICAL LRDEF, LTRI, LCOL
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DLARF, DLARFB, DLARFT, DROT, DSCAL,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
COL2 = MAX( 0, P - K )
LRDEF = LSAME( TYPEG, 'D' )
LCOL = LSAME( TYPEG, 'C' )
LTRI = LSAME( STRUCG, 'T' )
IF ( LRDEF ) THEN
WRKMIN = MAX( 1, N )
ELSE
IF ( NB.GE.1 ) THEN
WRKMIN = MAX( 1, ( N + K )*NB )
ELSE
WRKMIN = MAX( 1, N )
END IF
END IF
C
C Check the scalar input parameters.
C
IF ( .NOT.( LCOL .OR. LRDEF .OR. LSAME( TYPEG, 'R' ) ) ) THEN
INFO = -1
ELSE IF ( .NOT.( LTRI .OR. LSAME( STRUCG, 'N' ) ) ) THEN
INFO = -2
ELSE IF ( K.LT.0 ) THEN
INFO = -3
ELSE IF ( N.LT.0 ) THEN
INFO = -4
ELSE IF ( P.LT.K ) THEN
INFO = -5
ELSE IF ( Q.LT.0 .OR. ( LRDEF .AND. Q.LT.K ) ) THEN
INFO = -6
ELSE IF ( LRDEF .AND. ( RNK.LT.0 .OR. RNK.GT.K ) ) THEN
INFO = -8
ELSE IF ( ( LDA1.LT.1 ) .OR. ( LRDEF .AND. LDA1.LT.K ) ) THEN
INFO = -10
ELSE IF ( ( ( P.EQ.K ) .AND. LDA2.LT.1 ) .OR.
$ ( ( P.GT.K ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDA2.LT.MAX( 1, K ) ) ) .OR.
$ ( ( P.GT.K ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDA2.LT.( P-K ) ) ) ) THEN
INFO = -12
ELSE IF ( ( ( Q.EQ.0 ) .AND. LDB.LT.1 ) .OR.
$ ( ( Q.GT.0 ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDB.LT.MAX( 1, K ) ) ) .OR.
$ ( ( Q.GT.0 ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDB.LT.Q ) ) ) THEN
INFO = -14
ELSE IF ( ( LRDEF .OR. LCOL ) .AND. LDF1.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF ( (.NOT.( LRDEF .OR. LCOL ) ) .AND. LDF1.LT.MAX( 1, K ) )
$ THEN
INFO = -16
ELSE IF ( ( ( P.EQ.K ) .AND. LDF2.LT.1 ) .OR.
$ ( ( P.GT.K ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDF2.LT.MAX( 1, N ) ) ) .OR.
$ ( ( P.GT.K ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDF2.LT.( P-K ) ) ) ) THEN
INFO = -18
ELSE IF ( ( ( Q.EQ.0 ) .AND. LDG.LT.1 ) .OR.
$ ( ( Q.GT.0 ) .AND. ( LRDEF .OR. LCOL ) .AND.
$ ( LDG.LT.MAX( 1, N ) ) ) .OR.
$ ( ( Q.GT.0 ) .AND. .NOT.( LRDEF .OR. LCOL ) .AND.
$ ( LDG.LT.Q ) ) ) THEN
INFO = -20
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
DWORK(1) = DBLE( WRKMIN )
INFO = -23
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02CV', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( K, N ).EQ.0 .OR.
$ ( ( .NOT.LRDEF ) .AND. Q.EQ.0 .AND. P.EQ.K ) ) THEN
RETURN
END IF
C
IF ( LRDEF ) THEN
C
C Deficient generator.
C
IF ( COL2.EQ.0 ) THEN
PST2 = 2*K
ELSE
PST2 = 4*K
END IF
C
DO 10 I = 1, RNK
C
C Apply elementary reflectors.
C
IF ( COL2.GT.1 ) THEN
TAU = A2(I,1)
A2(I,1) = ONE
CALL DLARF( 'Right', N, COL2, A2(I,1), LDA2, TAU, F2,
$ LDF2, DWORK )
A2(I,1) = TAU
END IF
C
IF ( K.GT.I ) THEN
ALPHA = A1(I,I)
A1(I,I) = ONE
CALL DLARF( 'Right', N, K-I+1, A1(I,I), LDA1, CS(PST2+I),
$ F1(1,I), LDF1, DWORK )
A1(I,I) = ALPHA
END IF
C
IF ( COL2.GT.0 ) THEN
C = CS(2*K+I*2-1)
S = CS(2*K+I*2)
CALL DROT( N, F1(1,I), 1, F2, 1, C, S )
END IF
C
IF ( Q.GT.1 ) THEN
TAU = B(I,1)
B(I,1) = ONE
CALL DLARF( 'Right', N, Q, B(I,1), LDB, TAU,
$ G, LDG, DWORK )
B(I,1) = TAU
END IF
C
C Apply hyperbolic rotation.
C
C = CS(I*2-1)
S = CS(I*2)
CALL DSCAL( N, ONE/C, F1(1,I), 1 )
CALL DAXPY( N, -S/C, G(1,1), 1, F1(1,I), 1 )
CALL DSCAL( N, C, G(1,1), 1 )
CALL DAXPY( N, -S, F1(1,I), 1, G(1,1), 1 )
10 CONTINUE
C
LEN = Q
POS = 1
C
DO 20 J = RNK + 1, K
C
C Apply the reductions working on singular rows.
C
IF ( COL2.GT.1 ) THEN
TAU = A2(J,1)
A2(J,1) = ONE
CALL DLARF( 'Right', N, COL2, A2(J,1), LDA2, TAU, F2,
$ LDF2, DWORK )
A2(J,1) = TAU
END IF
IF ( K.GT.J ) THEN
ALPHA = A1(J,J)
A1(J,J) = ONE
CALL DLARF( 'Right', N, K-J+1, A1(J,J), LDA1, CS(PST2+J),
$ F1(1,J), LDF1, DWORK )
A1(J,J) = ALPHA
END IF
IF ( COL2.GT.0 ) THEN
C = CS(2*K+J*2-1)
S = CS(2*K+J*2)
CALL DROT( N, F1(1,J), 1, F2, 1, C, S )
END IF
IF ( LEN.GT.1 ) THEN
BETA = B(J,POS)
B(J,POS) = ONE
CALL DLARF( 'Right', N, LEN, B(J,POS), LDB, CS(J*2-1),
$ G(1,POS), LDG, DWORK )
B(J,POS) = BETA
END IF
LEN = LEN - 1
POS = POS + 1
20 CONTINUE
C
ELSE IF ( LCOL ) THEN
C
C Column oriented and not deficient generator.
C
C Apply an LQ like hyperbolic/orthogonal blocked decomposition.
C
IF ( LTRI ) THEN
LEN = MAX( N - K, 0 )
ELSE
LEN = N
END IF
IF ( COL2.GT.0 ) THEN
C
NBL = MIN( COL2, NB )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 50 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DLARFT( 'Forward', 'Rowwise', COL2, IB, A2(I,1),
$ LDA2, CS(4*K+I), DWORK, N+K )
CALL DLARFB( 'Right', 'No Transpose', 'Forward',
$ 'Rowwise', LEN, COL2, IB, A2(I,1),
$ LDA2, DWORK, N+K, F2, LDF2,
$ DWORK(IB+1), N+K )
C
DO 40 J = I, I + IB - 1
TAU = A2(J,1)
A2(J,1) = ONE
CALL DLARF( 'Right', LEN, MIN( COL2, J-I+1 ),
$ A2(J,1), LDA2, TAU, F2, LDF2, DWORK )
A2(J,1) = TAU
C = CS(2*K+J*2-1)
S = CS(2*K+J*2)
CALL DROT( LEN, F1(1,J), 1, F2, 1, C, S )
IF ( LTRI ) THEN
LEN = LEN + 1
TEMP = F1(LEN,J)
F1(LEN,J) = C*TEMP
F2(LEN,1) = -S*TEMP
C
DO 30 JJ = 2, COL2
F2(LEN,JJ) = ZERO
30 CONTINUE
C
END IF
40 CONTINUE
C
50 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 70 J = I, K
IF ( COL2.GT.1 ) THEN
TAU = A2(J,1)
A2(J,1) = ONE
CALL DLARF( 'Right', LEN, COL2, A2(J,1), LDA2, TAU,
$ F2, LDF2, DWORK )
A2(J,1) = TAU
END IF
C
C = CS(2*K+J*2-1)
S = CS(2*K+J*2)
CALL DROT( LEN, F1(1,J), 1, F2, 1, C, S )
IF ( LTRI ) THEN
LEN = LEN + 1
TEMP = F1(LEN,J)
F1(LEN,J) = C*TEMP
F2(LEN,1) = -S*TEMP
C
DO 60 JJ = 2, COL2
F2(LEN,JJ) = ZERO
60 CONTINUE
C
END IF
70 CONTINUE
C
PST2 = 5*K
ELSE
PST2 = 2*K
END IF
C
IF ( LTRI ) THEN
LEN = N - K
ELSE
LEN = N
END IF
C
NBL = MIN( Q, NB )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 100 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DLARFT( 'Forward', 'Rowwise', Q, IB, B(I,1),
$ LDB, CS(PST2+I), DWORK, N+K )
CALL DLARFB( 'Right', 'NonTranspose', 'Forward',
$ 'Rowwise', LEN, Q, IB, B(I,1),
$ LDB, DWORK, N+K, G, LDG,
$ DWORK(IB+1), N+K )
C
DO 90 J = I, I + IB - 1
TAU = B(J,1)
B(J,1) = ONE
CALL DLARF( 'Right', LEN, J-I+1, B(J,1), LDB,
$ TAU, G, LDG, DWORK )
B(J,1) = TAU
C
C Apply hyperbolic rotation.
C
C = CS(J*2-1)
S = CS(J*2)
CALL DSCAL( LEN, ONE/C, F1(1,J), 1 )
CALL DAXPY( LEN, -S/C, G, 1, F1(1,J), 1 )
CALL DSCAL( LEN, C, G, 1 )
CALL DAXPY( LEN, -S, F1(1,J), 1, G, 1 )
IF ( LTRI ) THEN
LEN = LEN + 1
G(LEN,1) = -S/C*F1(LEN,J)
F1(LEN,J) = F1(LEN,J) / C
C
DO 80 JJ = 2, Q
G(LEN,JJ) = ZERO
80 CONTINUE
C
END IF
90 CONTINUE
C
100 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 120 J = I, K
IF ( Q.GT.1 ) THEN
TAU = B(J,1)
B(J,1) = ONE
CALL DLARF( 'Right', LEN, Q, B(J,1), LDB, TAU,
$ G, LDG, DWORK )
B(J,1) = TAU
END IF
IF ( Q.GT.0 ) THEN
C
C Apply hyperbolic rotation.
C
C = CS(J*2-1)
S = CS(J*2)
CALL DSCAL( LEN, ONE/C, F1(1,J), 1 )
CALL DAXPY( LEN, -S/C, G, 1, F1(1,J), 1 )
CALL DSCAL( LEN, C, G, 1 )
CALL DAXPY( LEN, -S, F1(1,J), 1, G, 1 )
IF ( LTRI ) THEN
LEN = LEN + 1
G(LEN,1) = -S/C*F1(LEN,J)
F1(LEN,J) = F1(LEN,J) / C
C
DO 110 JJ = 2, Q
G(LEN,JJ) = ZERO
110 CONTINUE
C
END IF
END IF
120 CONTINUE
C
ELSE
C
C Row oriented and not deficient generator.
C
IF ( LTRI ) THEN
LEN = MAX( N - K, 0 )
ELSE
LEN = N
END IF
C
IF ( COL2.GT.0 ) THEN
NBL = MIN( NB, COL2 )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 150 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DLARFT( 'Forward', 'Columnwise', COL2, IB,
$ A2(1,I), LDA2, CS(4*K+I), DWORK, N+K )
CALL DLARFB( 'Left', 'Transpose', 'Forward',
$ 'Columnwise', COL2, LEN, IB, A2(1,I),
$ LDA2, DWORK, N+K, F2, LDF2,
$ DWORK(IB+1), N+K )
C
DO 140 J = I, I + IB - 1
TAU = A2(1,J)
A2(1,J) = ONE
CALL DLARF( 'Left', MIN( COL2, J-I+1 ), LEN,
$ A2(1,J), 1, TAU, F2, LDF2, DWORK )
A2(1,J) = TAU
C = CS(2*K+J*2-1)
S = CS(2*K+J*2)
CALL DROT( LEN, F1(J,1), LDF1, F2, LDF2, C, S )
IF ( LTRI ) THEN
LEN = LEN + 1
TEMP = F1(J,LEN)
F1(J,LEN) = C*TEMP
F2(1,LEN) = -S*TEMP
C
DO 130 JJ = 2, COL2
F2(JJ,LEN) = ZERO
130 CONTINUE
C
END IF
140 CONTINUE
C
150 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 170 J = I, K
IF ( COL2.GT.1 ) THEN
TAU = A2(1,J)
A2(1,J) = ONE
CALL DLARF( 'Left', COL2, LEN, A2(1,J), 1, TAU,
$ F2, LDF2, DWORK )
A2(1,J) = TAU
END IF
C
C = CS(2*K+J*2-1)
S = CS(2*K+J*2)
CALL DROT( LEN, F1(J,1), LDF1, F2, LDF2, C, S )
IF ( LTRI ) THEN
LEN = LEN + 1
TEMP = F1(J,LEN)
F1(J,LEN) = C*TEMP
F2(1,LEN) = -S*TEMP
C
DO 160 JJ = 2, COL2
F2(JJ,LEN) = ZERO
160 CONTINUE
C
END IF
170 CONTINUE
C
PST2 = 5*K
ELSE
PST2 = 2*K
END IF
C
IF ( LTRI ) THEN
LEN = N - K
ELSE
LEN = N
END IF
C
NBL = MIN( Q, NB )
IF ( NBL.GT.0 ) THEN
C
C Blocked version.
C
DO 200 I = 1, K - NBL + 1, NBL
IB = MIN( K-I+1, NBL )
CALL DLARFT( 'Forward', 'Columnwise', Q, IB, B(1,I),
$ LDB, CS(PST2+I), DWORK, N+K )
CALL DLARFB( 'Left', 'Transpose', 'Forward',
$ 'Columnwise', Q, LEN, IB, B(1,I),
$ LDB, DWORK, N+K, G, LDG,
$ DWORK(IB+1), N+K )
C
DO 190 J = I, I + IB - 1
TAU = B(1,J)
B(1,J) = ONE
CALL DLARF( 'Left', J-I+1, LEN, B(1,J), 1,
$ TAU, G, LDG, DWORK )
B(1,J) = TAU
C
C Apply hyperbolic rotation.
C
C = CS(J*2-1)
S = CS(J*2)
CALL DSCAL( LEN, ONE/C, F1(J,1), LDF1 )
CALL DAXPY( LEN, -S/C, G, LDG, F1(J,1), LDF1 )
CALL DSCAL( LEN, C, G, LDG )
CALL DAXPY( LEN, -S, F1(J,1), LDF1, G, LDG )
IF ( LTRI ) THEN
LEN = LEN + 1
G(1,LEN) = -S/C*F1(J,LEN)
F1(J,LEN) = F1(J,LEN) / C
C
DO 180 JJ = 2, Q
G(JJ,LEN) = ZERO
180 CONTINUE
C
END IF
190 CONTINUE
C
200 CONTINUE
C
ELSE
I = 1
END IF
C
C Unblocked version for the last or only block.
C
DO 220 J = I, K
IF ( Q.GT.1 ) THEN
TAU = B(1,J)
B(1,J) = ONE
CALL DLARF( 'Left', Q, LEN, B(1,J), 1, TAU,
$ G, LDG, DWORK )
B(1,J) = TAU
END IF
IF ( Q.GT.0 ) THEN
C
C Apply hyperbolic rotation.
C
C = CS(J*2-1)
S = CS(J*2)
CALL DSCAL( LEN, ONE/C, F1(J,1), LDF1 )
CALL DAXPY( LEN, -S/C, G, LDG, F1(J,1), LDF1 )
CALL DSCAL( LEN, C, G, LDG )
CALL DAXPY( LEN, -S, F1(J,1), LDF1, G, LDG )
IF ( LTRI ) THEN
LEN = LEN + 1
G(1,LEN) = -S/C*F1(J,LEN)
F1(J,LEN) = F1(J,LEN) / C
C
DO 210 JJ = 2, Q
G(JJ,LEN) = ZERO
210 CONTINUE
C
END IF
END IF
220 CONTINUE
C
END IF
C
C *** Last line of MB02CV ***
END
|