File: MB02CY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (372 lines) | stat: -rw-r--r-- 12,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
      SUBROUTINE MB02CY( TYPET, STRUCG, P, Q, N, K, A, LDA, B, LDB, H,
     $                   LDH, CS, LCS, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To apply the transformations created by the SLICOT Library
C     routine MB02CX on other columns / rows of the generator,
C     contained in the arrays A and B of positive and negative
C     generators, respectively.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TYPET   CHARACTER*1
C             Specifies the type of the generator, as follows:
C             = 'R':  A and B are additional columns of the generator;
C             = 'C':  A and B are additional rows of the generator.
C             Note:   in the sequel, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     STRUCG  CHARACTER*1
C             Information about the structure of the two generators,
C             as follows:
C             = 'T':  the trailing block of the positive generator
C                     is lower / upper triangular, and the trailing
C                     block of the negative generator is zero;
C             = 'N':  no special structure to mention.
C
C     Input/Output Parameters
C
C     P       (input)  INTEGER
C             The number of rows / columns in A containing the positive
C             generators.  P >= 0.
C
C     Q       (input)  INTEGER
C             The number of rows / columns in B containing the negative
C             generators.  Q >= 0.
C
C     N       (input)  INTEGER
C             The number of columns / rows in A and B to be processed.
C             N >= 0.
C
C     K       (input)  INTEGER
C             The number of columns / rows in H.  P >= K >= 0.
C
C     A       (input/output)  DOUBLE PRECISION array, dimension
C             (LDA, N) / (LDA, P)
C             On entry, the leading P-by-N / N-by-P part of this array
C             must contain the positive part of the generator.
C             On exit, the leading P-by-N / N-by-P part of this array
C             contains the transformed positive part of the generator.
C
C     LDA     INTEGER
C             The leading dimension of the array A.
C             LDA >= MAX(1,P),    if TYPET = 'R';
C             LDA >= MAX(1,N),    if TYPET = 'C'.
C
C     B       (input/output)  DOUBLE PRECISION array, dimension
C             (LDB, N) / (LDB, Q)
C             On entry, the leading Q-by-N / N-by-Q part of this array
C             must contain the negative part of the generator.
C             On exit, the leading Q-by-N / N-by-Q part of this array
C             contains the transformed negative part of the generator.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,Q),    if TYPET = 'R';
C             LDB >= MAX(1,N),    if TYPET = 'C'.
C
C     H       (input)  DOUBLE PRECISION array, dimension
C             (LDH, K) / (LDH, Q)
C             The leading Q-by-K / K-by-Q part of this array must
C             contain part of the necessary information for the
C             Householder transformations computed by SLICOT Library
C             routine MB02CX.
C
C     LDH     INTEGER
C             The leading dimension of the array H.
C             LDH >= MAX(1,Q),    if TYPET = 'R';
C             LDH >= MAX(1,K),    if TYPET = 'C'.
C
C     CS      (input)  DOUBLE PRECISION array, dimension (LCS)
C             The leading 2*K + MIN(K,Q) part of this array must
C             contain the necessary information for modified hyperbolic
C             rotations and the scalar factors of the Householder
C             transformations computed by SLICOT Library routine MB02CX.
C
C     LCS     INTEGER
C             The length of the array CS.  LCS >= 2*K + MIN(K,Q).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if  INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -16,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  succesful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The Householder transformations and modified hyperbolic rotations
C     computed by SLICOT Library routine MB02CX are applied to the
C     corresponding parts of the matrices A and B.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Chemnitz, Germany, June 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, July 2000,
C     February 2004, March 2007.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, K, LDA, LDB, LCS, LDH, LDWORK, N, P, Q
      CHARACTER         STRUCG, TYPET
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA, *), B(LDB, *), CS(*), DWORK(*), H(LDH,*)
C     .. Local Scalars ..
      LOGICAL           ISLWR, ISROW
      INTEGER           I, IERR, CI, MAXWRK
      DOUBLE PRECISION  C, S, TAU
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DLARF, DLASET, DORMLQ, DORMQR, DSCAL,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      ISROW = LSAME( TYPET,  'R' )
      ISLWR = LSAME( STRUCG, 'T' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( ISLWR .OR. LSAME( STRUCG, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF ( P.LT.0 ) THEN
         INFO = -3
      ELSE IF ( Q.LT.0 ) THEN
         INFO = -4
      ELSE IF ( N.LT.0 ) THEN
         INFO = -5
      ELSE IF ( K.LT.0 .OR. K.GT.P ) THEN
         INFO = -6
      ELSE IF ( LDA.LT.1 .OR. ( ISROW .AND. LDA.LT.P ) .OR.
     $                   ( .NOT.ISROW .AND. LDA.LT.N ) ) THEN
         INFO = -8
      ELSE IF ( LDB.LT.1 .OR. ( ISROW .AND. LDB.LT.Q ) .OR.
     $                   ( .NOT.ISROW .AND. LDB.LT.N ) ) THEN
         INFO = -10
      ELSE IF ( LDH.LT.1 .OR. ( ISROW .AND. LDH.LT.Q ) .OR.
     $                   ( .NOT.ISROW .AND. LDH.LT.K ) ) THEN
         INFO = -12
      ELSE IF ( LCS.LT.2*K + MIN( K, Q ) ) THEN
         INFO = -14
      ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
         DWORK(1) = MAX( 1, N )
         INFO = -16
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02CY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( N, K, Q ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Applying the transformations.
C
      IF ( ISROW ) THEN
C
C        The generator is row wise stored.
C
         IF ( ISLWR ) THEN
C
            DO 10  I = 1, K
C
C              Apply Householder transformation avoiding touching of
C              zero blocks.
C
               CI  = N - K + I - 1
               TAU = H(1,I)
               H(1,I) = ONE
               CALL DLARF( 'Left', MIN( I, Q ), CI, H(1,I), 1, TAU, B,
     $                     LDB, DWORK )
               H(1,I) = TAU
C
C              Now apply the hyperbolic rotation under the assumption
C              that A(I, N-K+I+1:N) and B(1, N-K+I:N) are zero.
C
               C = CS(I*2-1)
               S = CS(I*2)
C
               CALL DSCAL( CI, ONE/C, A(I,1), LDA )
               CALL DAXPY( CI,  -S/C, B(1,1), LDB, A(I,1), LDA )
               CALL DSCAL( CI,     C, B(1,1), LDB )
               CALL DAXPY( CI,    -S, A(I,1), LDA, B(1,1), LDB )
C
               B(1,N-K+I) =  -S/C * A(I,N-K+I)
               A(I,N-K+I) = ONE/C * A(I,N-K+I)
C
C              All below B(1,N-K+I) should be zero.
C
               IF( Q.GT.1 )
     $            CALL DLASET( 'All', Q-1, 1, ZERO, ZERO, B(2,N-K+I),
     $                         1 )
   10       CONTINUE
C
         ELSE
C
C           Apply the QR reduction on B.
C
            CALL DORMQR( 'Left', 'Transpose', Q, N, MIN( K, Q ), H,
     $                   LDH, CS(2*K+1), B, LDB, DWORK, LDWORK, IERR )
            MAXWRK = DWORK(1)
C
            DO 20  I = 1, K
C
C              Apply Householder transformation.
C
               TAU = H(1,I)
               H(1,I) = ONE
               CALL DLARF( 'Left', MIN( I, Q ), N, H(1,I), 1, TAU, B,
     $                     LDB, DWORK )
               H(1,I) = TAU
C
C              Apply Hyperbolic Rotation.
C
               C = CS(I*2-1)
               S = CS(I*2)
C
               CALL DSCAL( N, ONE/C, A(I,1), LDA )
               CALL DAXPY( N,  -S/C, B(1,1), LDB, A(I,1), LDA )
               CALL DSCAL( N,     C, B(1,1), LDB )
               CALL DAXPY( N,    -S, A(I,1), LDA, B(1,1), LDB )
   20       CONTINUE
C
         END IF
C
      ELSE
C
C        The generator is column wise stored.
C
         IF ( ISLWR ) THEN
C
            DO 30  I = 1, K
C
C              Apply Householder transformation avoiding touching zeros.
C
               CI  = N - K + I - 1
               TAU = H(I,1)
               H(I,1) = ONE
               CALL DLARF( 'Right', CI, MIN( I, Q ), H(I,1), LDH, TAU,
     $                     B, LDB, DWORK )
               H(I,1) = TAU
C
C              Apply Hyperbolic Rotation.
C
               C = CS(I*2-1)
               S = CS(I*2)
C
               CALL DSCAL( CI, ONE/C, A(1,I), 1 )
               CALL DAXPY( CI,  -S/C, B(1,1), 1, A(1,I), 1 )
               CALL DSCAL( CI,     C, B(1,1), 1 )
               CALL DAXPY( CI,    -S, A(1,I), 1, B(1,1), 1 )
C
               B(N-K+I,1) =  -S/C * A(N-K+I,I)
               A(N-K+I,I) = ONE/C * A(N-K+I,I)
C
C              All elements right behind B(N-K+I,1) should be zero.
C
               IF( Q.GT.1 )
     $            CALL DLASET( 'All', 1, Q-1, ZERO, ZERO, B(N-K+I,2),
     $                         LDB )
   30       CONTINUE
C
         ELSE
C
C           Apply the LQ reduction on B.
C
            CALL DORMLQ( 'Right', 'Transpose', N, Q, MIN( K, Q ), H,
     $                   LDH, CS(2*K+1), B, LDB, DWORK, LDWORK, IERR )
            MAXWRK = DWORK(1)
C
            DO 40  I = 1, K
C
C              Apply Householder transformation.
C
               TAU = H(I,1)
               H(I,1) = ONE
               CALL DLARF( 'Right', N, MIN( I, Q ), H(I,1), LDH, TAU, B,
     $                     LDB, DWORK )
               H(I,1) = TAU
C
C              Apply Hyperbolic Rotation.
C
               C = CS(I*2-1)
               S = CS(I*2)
C
               CALL DSCAL( N, ONE/C, A(1,I), 1 )
               CALL DAXPY( N,  -S/C, B(1,1), 1, A(1,I), 1 )
               CALL DSCAL( N,     C, B(1,1), 1 )
               CALL DAXPY( N,    -S, A(1,I), 1, B(1,1), 1 )
   40       CONTINUE
C
         END IF
C
      END IF
C
      DWORK(1) = MAX( MAXWRK, N )
C
      RETURN
C
C *** Last line of MB02CY ***
      END