1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
SUBROUTINE MB02DD( JOB, TYPET, K, M, N, TA, LDTA, T, LDT, G,
$ LDG, R, LDR, L, LDL, CS, LCS, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To update the Cholesky factor and the generator and/or the
C Cholesky factor of the inverse of a symmetric positive definite
C (s.p.d.) block Toeplitz matrix T, given the information from
C a previous factorization and additional blocks in TA of its first
C block row, or its first block column, depending on the routine
C parameter TYPET. Transformation information is stored.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the output of the routine, as follows:
C = 'R': updates the generator G of the inverse and
C computes the new columns / rows for the Cholesky
C factor R of T;
C = 'A': updates the generator G, computes the new
C columns / rows for the Cholesky factor R of T and
C the new rows / columns for the Cholesky factor L
C of the inverse;
C = 'O': only computes the new columns / rows for the
C Cholesky factor R of T.
C
C TYPET CHARACTER*1
C Specifies the type of T, as follows:
C = 'R': the first block row of an s.p.d. block Toeplitz
C matrix was/is defined; if demanded, the Cholesky
C factors R and L are upper and lower triangular,
C respectively, and G contains the transposed
C generator of the inverse;
C = 'C': the first block column of an s.p.d. block Toeplitz
C matrix was/is defined; if demanded, the Cholesky
C factors R and L are lower and upper triangular,
C respectively, and G contains the generator of the
C inverse. This choice results in a column oriented
C algorithm which is usually faster.
C Note: in this routine, the notation x / y means that
C x corresponds to TYPET = 'R' and y corresponds to
C TYPET = 'C'.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows / columns in T, which should be equal
C to the blocksize. K >= 0.
C
C M (input) INTEGER
C The number of blocks in TA. M >= 0.
C
C N (input) INTEGER
C The number of blocks in T. N >= 0.
C
C TA (input/output) DOUBLE PRECISION array, dimension
C (LDTA,M*K) / (LDTA,K)
C On entry, the leading K-by-M*K / M*K-by-K part of this
C array must contain the (N+1)-th to (N+M)-th blocks in the
C first block row / column of an s.p.d. block Toeplitz
C matrix.
C On exit, if INFO = 0, the leading K-by-M*K / M*K-by-K part
C of this array contains information on the Householder
C transformations used, such that the array
C
C [ T TA ] / [ T ]
C [ TA ]
C
C serves as the new transformation matrix T for further
C applications of this routine.
C
C LDTA INTEGER
C The leading dimension of the array TA.
C LDTA >= MAX(1,K), if TYPET = 'R';
C LDTA >= MAX(1,M*K), if TYPET = 'C'.
C
C T (input) DOUBLE PRECISION array, dimension (LDT,N*K) /
C (LDT,K)
C The leading K-by-N*K / N*K-by-K part of this array must
C contain transformation information generated by the SLICOT
C Library routine MB02CD, i.e., in the first K-by-K block,
C the upper / lower Cholesky factor of T(1:K,1:K), and in
C the remaining part, the Householder transformations
C applied during the initial factorization process.
C
C LDT INTEGER
C The leading dimension of the array T.
C LDT >= MAX(1,K), if TYPET = 'R';
C LDT >= MAX(1,N*K), if TYPET = 'C'.
C
C G (input/output) DOUBLE PRECISION array, dimension
C (LDG,( N + M )*K) / (LDG,2*K)
C On entry, if JOB = 'R', or 'A', then the leading
C 2*K-by-N*K / N*K-by-2*K part of this array must contain,
C in the first K-by-K block of the second block row /
C column, the lower right block of the Cholesky factor of
C the inverse of T, and in the remaining part, the generator
C of the inverse of T.
C On exit, if INFO = 0 and JOB = 'R', or 'A', then the
C leading 2*K-by-( N + M )*K / ( N + M )*K-by-2*K part of
C this array contains the same information as on entry, now
C for the updated Toeplitz matrix. Actually, to obtain a
C generator of the inverse one has to set
C G(K+1:2*K, 1:K) = 0, if TYPET = 'R';
C G(1:K, K+1:2*K) = 0, if TYPET = 'C'.
C
C LDG INTEGER
C The leading dimension of the array G.
C LDG >= MAX(1,2*K), if TYPET = 'R' and JOB = 'R', or 'A';
C LDG >= MAX(1,( N + M )*K),
C if TYPET = 'C' and JOB = 'R', or 'A';
C LDG >= 1, if JOB = 'O'.
C
C R (input/output) DOUBLE PRECISION array, dimension
C (LDR,M*K) / (LDR,( N + M )*K)
C On input, the leading N*K-by-K part of R(K+1,1) /
C K-by-N*K part of R(1,K+1) contains the last block column /
C row of the previous Cholesky factor R.
C On exit, if INFO = 0, then the leading
C ( N + M )*K-by-M*K / M*K-by-( N + M )*K part of this
C array contains the last M*K columns / rows of the upper /
C lower Cholesky factor of T. The elements in the strictly
C lower / upper triangular part are not referenced.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX(1, ( N + M )*K), if TYPET = 'R';
C LDR >= MAX(1, M*K), if TYPET = 'C'.
C
C L (output) DOUBLE PRECISION array, dimension
C (LDL,( N + M )*K) / (LDL,M*K)
C If INFO = 0 and JOB = 'A', then the leading
C M*K-by-( N + M )*K / ( N + M )*K-by-M*K part of this
C array contains the last M*K rows / columns of the lower /
C upper Cholesky factor of the inverse of T. The elements
C in the strictly upper / lower triangular part are not
C referenced.
C
C LDL INTEGER
C The leading dimension of the array L.
C LDL >= MAX(1, M*K), if TYPET = 'R' and JOB = 'A';
C LDL >= MAX(1, ( N + M )*K), if TYPET = 'C' and JOB = 'A';
C LDL >= 1, if JOB = 'R', or 'O'.
C
C CS (input/output) DOUBLE PRECISION array, dimension (LCS)
C On input, the leading 3*(N-1)*K part of this array must
C contain the necessary information about the hyperbolic
C rotations and Householder transformations applied
C previously by SLICOT Library routine MB02CD.
C On exit, if INFO = 0, then the leading 3*(N+M-1)*K part of
C this array contains information about all the hyperbolic
C rotations and Householder transformations applied during
C the whole process.
C
C LCS INTEGER
C The length of the array CS. LCS >= 3*(N+M-1)*K.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -19, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,(N+M-1)*K).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction algorithm failed. The block Toeplitz
C matrix associated with [ T TA ] / [ T' TA' ]' is
C not (numerically) positive definite.
C
C METHOD
C
C Householder transformations and modified hyperbolic rotations
C are used in the Schur algorithm [1], [2].
C
C REFERENCES
C
C [1] Kailath, T. and Sayed, A.
C Fast Reliable Algorithms for Matrices with Structure.
C SIAM Publications, Philadelphia, 1999.
C
C [2] Kressner, D. and Van Dooren, P.
C Factorizations and linear system solvers for matrices with
C Toeplitz structure.
C SLICOT Working Note 2000-2, 2000.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C 3 2
C The algorithm requires 0(K ( N M + M ) ) floating point
C operations.
C
C FURTHER COMMENTS
C
C For min(K,N,M) = 0, the routine sets DWORK(1) = 1 and returns.
C Although the calculations could still be performed when N = 0,
C but min(K,M) > 0, this case is not considered as an "update".
C SLICOT Library routine MB02CD should be called with the argument
C M instead of N.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Chemnitz, Germany, December 2000.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C Feb. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOB, TYPET
INTEGER INFO, K, LCS, LDG, LDL, LDR, LDT, LDTA, LDWORK,
$ M, N
C .. Array Arguments ..
DOUBLE PRECISION CS(*), DWORK(*), G(LDG, *), L(LDL,*), R(LDR,*),
$ T(LDT,*), TA(LDTA,*)
C .. Local Scalars ..
INTEGER I, IERR, J, MAXWRK, STARTI, STARTR, STARTT
LOGICAL COMPG, COMPL, ISROW
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLACPY, DLASET, DTRSM, MB02CX, MB02CY,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
COMPL = LSAME( JOB, 'A' )
COMPG = LSAME( JOB, 'R' ) .OR. COMPL
ISROW = LSAME( TYPET, 'R' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( COMPG .OR. LSAME( JOB, 'O' ) ) ) THEN
INFO = -1
ELSE IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
INFO = -2
ELSE IF ( K.LT.0 ) THEN
INFO = -3
ELSE IF ( M.LT.0 ) THEN
INFO = -4
ELSE IF ( N.LT.0 ) THEN
INFO = -5
ELSE IF ( LDTA.LT.1 .OR. ( ISROW .AND. LDTA.LT.K ) .OR.
$ ( .NOT.ISROW .AND. LDTA.LT.M*K ) ) THEN
INFO = -7
ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
$ ( .NOT.ISROW .AND. LDT.LT.N*K ) ) THEN
INFO = -9
ELSE IF ( ( COMPG .AND. ( ( ISROW .AND. LDG.LT.2*K )
$ .OR. ( .NOT.ISROW .AND. LDG.LT.( N + M )*K ) ) )
$ .OR. LDG.LT.1 ) THEN
INFO = -11
ELSE IF ( ( ( ISROW .AND. LDR.LT.( N + M )*K ) .OR.
$ ( .NOT.ISROW .AND. LDR.LT.M*K ) ) .OR.
$ LDR.LT.1 ) THEN
INFO = -13
ELSE IF ( ( COMPL .AND. ( ( ISROW .AND. LDL.LT.M*K )
$ .OR. ( .NOT.ISROW .AND. LDL.LT.( N + M )*K ) ) )
$ .OR. LDL.LT.1 ) THEN
INFO = -15
ELSE IF ( LCS.LT.3*( N + M - 1 )*K ) THEN
INFO = -17
ELSE IF ( LDWORK.LT.MAX( 1, ( N + M - 1 )*K ) ) THEN
DWORK(1) = MAX( 1, ( N + M - 1 )*K )
INFO = -19
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02DD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( K, N, M ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
MAXWRK = 1
IF ( ISROW ) THEN
C
C Apply Cholesky factor of T(1:K, 1:K) on TA.
C
CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K, M*K,
$ ONE, T, LDT, TA, LDTA )
C
C Initialize the output matrices.
C
IF ( COMPG ) THEN
CALL DLASET( 'All', K, M*K, ZERO, ZERO, G(1,N*K+1), LDG )
IF ( M.GE.N-1 .AND. N.GT.1 ) THEN
CALL DLACPY( 'All', K, (N-1)*K, G(K+1,K+1), LDG,
$ G(K+1,K*(M+1)+1), LDG )
ELSE
DO 10 I = N*K, K + 1, -1
CALL DCOPY( K, G(K+1,I), 1, G(K+1,M*K+I), 1 )
10 CONTINUE
END IF
CALL DLASET( 'All', K, M*K, ZERO, ZERO, G(K+1,K+1), LDG )
END IF
C
CALL DLACPY( 'All', K, M*K, TA, LDTA, R, LDR )
C
C Apply the stored transformations on the new columns.
C
DO 20 I = 2, N
C
C Copy the last M-1 blocks of the positive generator together;
C the last M blocks of the negative generator are contained
C in TA.
C
STARTR = ( I - 1 )*K + 1
STARTT = 3*( I - 2 )*K + 1
CALL DLACPY( 'All', K, (M-1)*K, R(STARTR-K,1), LDR,
$ R(STARTR,K+1), LDR )
C
C Apply the transformations stored in T on the generator.
C
CALL MB02CY( 'Row', 'NoStructure', K, K, M*K, K,
$ R(STARTR,1), LDR, TA, LDTA, T(1,STARTR), LDT,
$ CS(STARTT), 3*K, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
20 CONTINUE
C
C Now, we have "normality" and can apply further M Schur steps.
C
DO 30 I = 1, M
C
C Copy the first M-I+1 blocks of the positive generator
C together; the first M-I+1 blocks of the negative generator
C are contained in TA.
C
STARTT = 3*( N + I - 2 )*K + 1
STARTI = ( M - I + 1 )*K + 1
STARTR = ( N + I - 1 )*K + 1
IF ( I.EQ.1 ) THEN
CALL DLACPY( 'All', K, (M-1)*K, R(STARTR-K,1), LDR,
$ R(STARTR,K+1), LDR )
ELSE
CALL DLACPY( 'Upper', K, (M-I+1)*K,
$ R(STARTR-K,(I-2)*K+1), LDR,
$ R(STARTR,(I-1)*K+1), LDR )
END IF
C
C Reduce the generator to proper form.
C
CALL MB02CX( 'Row', K, K, K, R(STARTR,(I-1)*K+1), LDR,
$ TA(1,(I-1)*K+1), LDTA, CS(STARTT), 3*K, DWORK,
$ LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
IF ( M.GT.I ) THEN
CALL MB02CY( 'Row', 'NoStructure', K, K, (M-I)*K, K,
$ R(STARTR,I*K+1), LDR, TA(1,I*K+1), LDTA,
$ TA(1,(I-1)*K+1), LDTA, CS(STARTT), 3*K,
$ DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
END IF
C
IF ( COMPG ) THEN
C
C Transformations acting on the inverse generator:
C
CALL MB02CY( 'Row', 'Triangular', K, K, K, K, G(K+1,1),
$ LDG, G(1,STARTR), LDG, TA(1,(I-1)*K+1),
$ LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
CALL MB02CY( 'Row', 'NoStructure', K, K, (N+I-1)*K, K,
$ G(K+1,STARTI), LDG, G, LDG, TA(1,(I-1)*K+1),
$ LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
IF ( COMPL ) THEN
CALL DLACPY( 'All', K, (N+I-1)*K, G(K+1,STARTI), LDG,
$ L((I-1)*K+1,1), LDL )
CALL DLACPY( 'Lower', K, K, G(K+1,1), LDG,
$ L((I-1)*K+1,STARTR), LDL )
END IF
C
END IF
30 CONTINUE
C
ELSE
C
C Apply Cholesky factor of T(1:K, 1:K) on TA.
C
CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit', M*K, K,
$ ONE, T, LDT, TA, LDTA )
C
C Initialize the output matrices.
C
IF ( COMPG ) THEN
CALL DLASET( 'All', M*K, K, ZERO, ZERO, G(N*K+1,1), LDG )
IF ( M.GE.N-1 .AND. N.GT.1 ) THEN
CALL DLACPY( 'All', (N-1)*K, K, G(K+1,K+1), LDG,
$ G(K*(M+1)+1,K+1), LDG )
ELSE
DO 40 I = 1, K
DO 35 J = N*K, K + 1, -1
G(J+M*K,K+I) = G(J,K+I)
35 CONTINUE
40 CONTINUE
END IF
CALL DLASET( 'All', M*K, K, ZERO, ZERO, G(K+1,K+1), LDG )
END IF
C
CALL DLACPY( 'All', M*K, K, TA, LDTA, R, LDR )
C
C Apply the stored transformations on the new rows.
C
DO 50 I = 2, N
C
C Copy the last M-1 blocks of the positive generator together;
C the last M blocks of the negative generator are contained
C in TA.
C
STARTR = ( I - 1 )*K + 1
STARTT = 3*( I - 2 )*K + 1
CALL DLACPY( 'All', (M-1)*K, K, R(1,STARTR-K), LDR,
$ R(K+1,STARTR), LDR )
C
C Apply the transformations stored in T on the generator.
C
CALL MB02CY( 'Column', 'NoStructure', K, K, M*K, K,
$ R(1,STARTR), LDR, TA, LDTA, T(STARTR,1), LDT,
$ CS(STARTT), 3*K, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
50 CONTINUE
C
C Now, we have "normality" and can apply further M Schur steps.
C
DO 60 I = 1, M
C
C Copy the first M-I+1 blocks of the positive generator
C together; the first M-I+1 blocks of the negative generator
C are contained in TA.
C
STARTT = 3*( N + I - 2 )*K + 1
STARTI = ( M - I + 1 )*K + 1
STARTR = ( N + I - 1 )*K + 1
IF ( I.EQ.1 ) THEN
CALL DLACPY( 'All', (M-1)*K, K, R(1,STARTR-K), LDR,
$ R(K+1,STARTR), LDR )
ELSE
CALL DLACPY( 'Lower', (M-I+1)*K, K,
$ R((I-2)*K+1,STARTR-K), LDR,
$ R((I-1)*K+1,STARTR), LDR )
END IF
C
C Reduce the generator to proper form.
C
CALL MB02CX( 'Column', K, K, K, R((I-1)*K+1,STARTR), LDR,
$ TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K, DWORK,
$ LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
IF ( M.GT.I ) THEN
CALL MB02CY( 'Column', 'NoStructure', K, K, (M-I)*K, K,
$ R(I*K+1,STARTR), LDR, TA(I*K+1,1), LDTA,
$ TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K,
$ DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
END IF
C
IF ( COMPG ) THEN
C
C Transformations acting on the inverse generator:
C
CALL MB02CY( 'Column', 'Triangular', K, K, K, K,
$ G(1,K+1), LDG, G(STARTR,1), LDG,
$ TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K,
$ DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
CALL MB02CY( 'Column', 'NoStructure', K, K, (N+I-1)*K, K,
$ G(STARTI,K+1), LDG, G, LDG, TA((I-1)*K+1,1),
$ LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
IF ( COMPL ) THEN
CALL DLACPY( 'All', (N+I-1)*K, K, G(STARTI,K+1), LDG,
$ L(1,(I-1)*K+1), LDL )
CALL DLACPY( 'Upper', K, K, G(1,K+1), LDG,
$ L(STARTR,(I-1)*K+1), LDL )
END IF
C
END IF
60 CONTINUE
C
END IF
C
DWORK(1) = MAXWRK
C
RETURN
C
C *** Last line of MB02DD ***
END
|