File: MB02DD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (564 lines) | stat: -rw-r--r-- 21,860 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
      SUBROUTINE MB02DD( JOB, TYPET, K, M, N, TA, LDTA, T, LDT, G,
     $                   LDG, R, LDR, L, LDL, CS, LCS, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To update the Cholesky factor and the generator and/or the
C     Cholesky factor of the inverse of a symmetric positive definite
C     (s.p.d.) block Toeplitz matrix T, given the information from
C     a previous factorization and additional blocks in TA of its first
C     block row, or its first block column, depending on the routine
C     parameter TYPET. Transformation information is stored.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the output of the routine, as follows:
C             = 'R':  updates the generator G of the inverse and
C                     computes the new columns / rows for the Cholesky
C                     factor R of T;
C             = 'A':  updates the generator G, computes the new
C                     columns / rows for the Cholesky factor R of T and
C                     the new rows / columns for the Cholesky factor L
C                     of the inverse;
C             = 'O':  only computes the new columns / rows for the
C                     Cholesky factor R of T.
C
C     TYPET   CHARACTER*1
C             Specifies the type of T, as follows:
C             = 'R':  the first block row of an s.p.d. block Toeplitz
C                     matrix was/is defined; if demanded, the Cholesky
C                     factors R and L are upper and lower triangular,
C                     respectively, and G contains the transposed
C                     generator of the inverse;
C             = 'C':  the first block column of an s.p.d. block Toeplitz
C                     matrix was/is defined; if demanded, the Cholesky
C                     factors R and L are lower and upper triangular,
C                     respectively, and G contains the generator of the
C                     inverse. This choice results in a column oriented
C                     algorithm which is usually faster.
C             Note:   in this routine, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of rows / columns in T, which should be equal
C             to the blocksize.  K >= 0.
C
C     M       (input)  INTEGER
C             The number of blocks in TA.  M >= 0.
C
C     N       (input)  INTEGER
C             The number of blocks in T.  N >= 0.
C
C     TA      (input/output)  DOUBLE PRECISION array, dimension
C             (LDTA,M*K) / (LDTA,K)
C             On entry, the leading K-by-M*K / M*K-by-K part of this
C             array must contain the (N+1)-th to (N+M)-th blocks in the
C             first block row / column of an s.p.d. block Toeplitz
C             matrix.
C             On exit, if INFO = 0, the leading K-by-M*K / M*K-by-K part
C             of this array contains information on the Householder
C             transformations used, such that the array
C
C                        [ T  TA ]    /    [ T  ]
C                                          [ TA ]
C
C             serves as the new transformation matrix T for further
C             applications of this routine.
C
C     LDTA    INTEGER
C             The leading dimension of the array TA.
C             LDTA >= MAX(1,K),   if TYPET = 'R';
C             LDTA >= MAX(1,M*K), if TYPET = 'C'.
C
C     T       (input)  DOUBLE PRECISION array, dimension (LDT,N*K) /
C             (LDT,K)
C             The leading K-by-N*K / N*K-by-K part of this array must
C             contain transformation information generated by the SLICOT
C             Library routine MB02CD, i.e., in the first K-by-K block,
C             the upper / lower Cholesky factor of T(1:K,1:K), and in
C             the remaining part, the Householder transformations
C             applied during the initial factorization process.
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= MAX(1,K),    if TYPET = 'R';
C             LDT >= MAX(1,N*K),  if TYPET = 'C'.
C
C     G       (input/output)  DOUBLE PRECISION array, dimension
C             (LDG,( N + M )*K) / (LDG,2*K)
C             On entry, if JOB = 'R', or 'A', then the leading
C             2*K-by-N*K / N*K-by-2*K part of this array must contain,
C             in the first K-by-K block of the second block row /
C             column, the lower right block of the Cholesky factor of
C             the inverse of T, and in the remaining part, the generator
C             of the inverse of T.
C             On exit, if INFO = 0 and JOB = 'R', or 'A', then the
C             leading 2*K-by-( N + M )*K / ( N + M )*K-by-2*K part of
C             this array contains the same information as on entry, now
C             for the updated Toeplitz matrix. Actually, to obtain a
C             generator of the inverse one has to set
C               G(K+1:2*K, 1:K) = 0,    if TYPET = 'R';
C               G(1:K, K+1:2*K) = 0,    if TYPET = 'C'.
C
C     LDG     INTEGER
C             The leading dimension of the array G.
C             LDG >= MAX(1,2*K),  if TYPET = 'R' and JOB = 'R', or 'A';
C             LDG >= MAX(1,( N + M )*K),
C                                 if TYPET = 'C' and JOB = 'R', or 'A';
C             LDG >= 1,           if JOB = 'O'.
C
C     R       (input/output)  DOUBLE PRECISION array, dimension
C             (LDR,M*K) / (LDR,( N + M )*K)
C             On input, the leading N*K-by-K part of R(K+1,1) /
C             K-by-N*K part of R(1,K+1) contains the last block column /
C             row of the previous Cholesky factor R.
C             On exit, if INFO = 0, then the leading
C             ( N + M )*K-by-M*K / M*K-by-( N + M )*K part of this
C             array contains the last M*K columns / rows of the upper /
C             lower Cholesky factor of T. The elements in the strictly
C             lower / upper triangular part are not referenced.
C
C     LDR     INTEGER
C             The leading dimension of the array R.
C             LDR >= MAX(1, ( N + M )*K), if TYPET = 'R';
C             LDR >= MAX(1, M*K),         if TYPET = 'C'.
C
C     L       (output)  DOUBLE PRECISION array, dimension
C             (LDL,( N + M )*K) / (LDL,M*K)
C             If INFO = 0 and JOB = 'A', then the leading
C             M*K-by-( N + M )*K / ( N + M )*K-by-M*K part of this
C             array contains the last M*K rows / columns of the lower /
C             upper Cholesky factor of the inverse of T. The elements
C             in the strictly upper / lower triangular part are not
C             referenced.
C
C     LDL     INTEGER
C             The leading dimension of the array L.
C             LDL >= MAX(1, M*K),         if TYPET = 'R' and JOB = 'A';
C             LDL >= MAX(1, ( N + M )*K), if TYPET = 'C' and JOB = 'A';
C             LDL >= 1,                   if JOB = 'R', or 'O'.
C
C     CS      (input/output)  DOUBLE PRECISION array, dimension (LCS)
C             On input, the leading 3*(N-1)*K part of this array must
C             contain the necessary information about the hyperbolic
C             rotations and Householder transformations applied
C             previously by SLICOT Library routine MB02CD.
C             On exit, if INFO = 0, then the leading 3*(N+M-1)*K part of
C             this array contains information about all the hyperbolic
C             rotations and Householder transformations applied during
C             the whole process.
C
C     LCS     INTEGER
C             The length of the array CS.  LCS >= 3*(N+M-1)*K.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -19,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,(N+M-1)*K).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed. The block Toeplitz
C                   matrix associated with [ T  TA ] / [ T'  TA' ]' is
C                   not (numerically) positive definite.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C                               3         2
C     The algorithm requires 0(K ( N M + M ) ) floating point
C     operations.
C
C     FURTHER COMMENTS
C
C     For min(K,N,M) = 0, the routine sets DWORK(1) = 1 and returns.
C     Although the calculations could still be performed when N = 0,
C     but min(K,M) > 0, this case is not considered as an "update".
C     SLICOT Library routine MB02CD should be called with the argument
C     M instead of N.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Chemnitz, Germany, December 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C     Feb. 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOB, TYPET
      INTEGER           INFO, K, LCS, LDG, LDL, LDR, LDT, LDTA, LDWORK,
     $                  M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), G(LDG, *), L(LDL,*), R(LDR,*),
     $                  T(LDT,*), TA(LDTA,*)
C     .. Local Scalars ..
      INTEGER           I, IERR, J, MAXWRK, STARTI, STARTR, STARTT
      LOGICAL           COMPG, COMPL, ISROW
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLACPY, DLASET, DTRSM, MB02CX, MB02CY,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      COMPL = LSAME( JOB, 'A' )
      COMPG = LSAME( JOB, 'R' ) .OR. COMPL
      ISROW = LSAME( TYPET, 'R' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( COMPG .OR. LSAME( JOB, 'O' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( M.LT.0 ) THEN
         INFO = -4
      ELSE IF ( N.LT.0 ) THEN
         INFO = -5
      ELSE IF ( LDTA.LT.1 .OR. ( ISROW .AND. LDTA.LT.K ) .OR.
     $                    ( .NOT.ISROW .AND. LDTA.LT.M*K ) ) THEN
         INFO = -7
      ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
     $                   ( .NOT.ISROW .AND. LDT.LT.N*K ) ) THEN
         INFO = -9
      ELSE IF ( ( COMPG .AND. ( ( ISROW .AND. LDG.LT.2*K )
     $                .OR. ( .NOT.ISROW .AND. LDG.LT.( N + M )*K ) ) )
     $          .OR. LDG.LT.1 ) THEN
         INFO = -11
      ELSE IF ( ( (      ISROW .AND. LDR.LT.( N + M )*K ) .OR.
     $            ( .NOT.ISROW .AND. LDR.LT.M*K ) ) .OR.
     $          LDR.LT.1 ) THEN
         INFO = -13
      ELSE IF ( ( COMPL .AND. ( ( ISROW .AND. LDL.LT.M*K )
     $                .OR. ( .NOT.ISROW .AND. LDL.LT.( N + M )*K ) ) )
     $          .OR. LDL.LT.1 ) THEN
         INFO = -15
      ELSE IF ( LCS.LT.3*( N + M - 1 )*K ) THEN
         INFO = -17
      ELSE IF ( LDWORK.LT.MAX( 1, ( N + M - 1 )*K ) ) THEN
         DWORK(1) = MAX( 1, ( N + M - 1 )*K )
         INFO = -19
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02DD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( K, N, M ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      MAXWRK = 1
      IF ( ISROW ) THEN
C
C        Apply Cholesky factor of T(1:K, 1:K) on TA.
C
         CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K, M*K,
     $               ONE, T, LDT, TA, LDTA )
C
C        Initialize the output matrices.
C
         IF ( COMPG ) THEN
            CALL DLASET( 'All', K, M*K, ZERO, ZERO, G(1,N*K+1), LDG )
            IF ( M.GE.N-1 .AND. N.GT.1 ) THEN
               CALL DLACPY( 'All', K, (N-1)*K, G(K+1,K+1), LDG,
     $                      G(K+1,K*(M+1)+1), LDG )
            ELSE
               DO 10  I = N*K, K + 1, -1
                  CALL DCOPY( K, G(K+1,I), 1, G(K+1,M*K+I), 1 )
   10          CONTINUE
            END IF
            CALL DLASET( 'All', K, M*K, ZERO, ZERO, G(K+1,K+1), LDG )
         END IF
C
         CALL DLACPY( 'All', K, M*K, TA, LDTA, R, LDR )
C
C        Apply the stored transformations on the new columns.
C
         DO 20  I = 2, N
C
C           Copy the last M-1 blocks of the positive generator together;
C           the last M blocks of the negative generator are contained
C           in TA.
C
            STARTR =   ( I - 1 )*K + 1
            STARTT = 3*( I - 2 )*K + 1
            CALL DLACPY( 'All', K, (M-1)*K, R(STARTR-K,1), LDR,
     $                   R(STARTR,K+1), LDR )
C
C           Apply the transformations stored in T on the generator.
C
            CALL MB02CY( 'Row', 'NoStructure', K, K, M*K, K,
     $                   R(STARTR,1), LDR, TA, LDTA, T(1,STARTR), LDT,
     $                   CS(STARTT), 3*K, DWORK, LDWORK, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
   20    CONTINUE
C
C        Now, we have "normality" and can apply further M Schur steps.
C
         DO 30  I = 1, M
C
C           Copy the first M-I+1 blocks of the positive generator
C           together; the first M-I+1 blocks of the negative generator
C           are contained in TA.
C
            STARTT = 3*( N + I - 2 )*K + 1
            STARTI = ( M - I + 1 )*K + 1
            STARTR = ( N + I - 1 )*K + 1
            IF ( I.EQ.1 ) THEN
               CALL DLACPY( 'All', K, (M-1)*K, R(STARTR-K,1), LDR,
     $                      R(STARTR,K+1), LDR )
            ELSE
               CALL DLACPY( 'Upper', K, (M-I+1)*K,
     $                      R(STARTR-K,(I-2)*K+1), LDR,
     $                      R(STARTR,(I-1)*K+1), LDR )
            END IF
C
C           Reduce the generator to proper form.
C
            CALL MB02CX( 'Row', K, K, K, R(STARTR,(I-1)*K+1), LDR,
     $                   TA(1,(I-1)*K+1), LDTA, CS(STARTT), 3*K, DWORK,
     $                   LDWORK, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
            IF ( M.GT.I ) THEN
               CALL MB02CY( 'Row', 'NoStructure', K, K, (M-I)*K, K,
     $                      R(STARTR,I*K+1), LDR, TA(1,I*K+1), LDTA,
     $                      TA(1,(I-1)*K+1), LDTA, CS(STARTT), 3*K,
     $                      DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
            END IF
C
            IF ( COMPG ) THEN
C
C              Transformations acting on the inverse generator:
C
               CALL MB02CY( 'Row', 'Triangular', K, K, K, K, G(K+1,1),
     $                      LDG, G(1,STARTR), LDG, TA(1,(I-1)*K+1),
     $                      LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               CALL MB02CY( 'Row', 'NoStructure', K, K, (N+I-1)*K, K,
     $                      G(K+1,STARTI), LDG, G, LDG, TA(1,(I-1)*K+1),
     $                      LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               IF ( COMPL ) THEN
                  CALL DLACPY( 'All', K, (N+I-1)*K, G(K+1,STARTI), LDG,
     $                         L((I-1)*K+1,1), LDL )
                  CALL DLACPY( 'Lower', K, K, G(K+1,1), LDG,
     $                         L((I-1)*K+1,STARTR), LDL )
               END IF
C
            END IF
   30    CONTINUE
C
      ELSE
C
C        Apply Cholesky factor of T(1:K, 1:K) on TA.
C
         CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit', M*K, K,
     $               ONE, T, LDT, TA, LDTA )
C
C        Initialize the output matrices.
C
         IF ( COMPG ) THEN
            CALL DLASET( 'All', M*K, K, ZERO, ZERO, G(N*K+1,1), LDG )
            IF ( M.GE.N-1 .AND. N.GT.1 ) THEN
               CALL DLACPY( 'All', (N-1)*K, K, G(K+1,K+1), LDG,
     $                      G(K*(M+1)+1,K+1), LDG )
            ELSE
               DO 40  I = 1, K
                  DO 35  J = N*K, K + 1, -1
                     G(J+M*K,K+I) = G(J,K+I)
   35             CONTINUE
   40          CONTINUE
            END IF
            CALL DLASET( 'All', M*K, K, ZERO, ZERO, G(K+1,K+1), LDG )
         END IF
C
         CALL DLACPY( 'All', M*K, K, TA, LDTA, R, LDR )
C
C        Apply the stored transformations on the new rows.
C
         DO 50  I = 2, N
C
C           Copy the last M-1 blocks of the positive generator together;
C           the last M blocks of the negative generator are contained
C           in TA.
C
            STARTR =   ( I - 1 )*K + 1
            STARTT = 3*( I - 2 )*K + 1
            CALL DLACPY( 'All', (M-1)*K, K, R(1,STARTR-K), LDR,
     $                   R(K+1,STARTR), LDR )
C
C           Apply the transformations stored in T on the generator.
C
            CALL MB02CY( 'Column', 'NoStructure', K, K, M*K, K,
     $                   R(1,STARTR), LDR, TA, LDTA, T(STARTR,1), LDT,
     $                   CS(STARTT), 3*K, DWORK, LDWORK, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
   50    CONTINUE
C
C        Now, we have "normality" and can apply further M Schur steps.
C
         DO 60  I = 1, M
C
C           Copy the first M-I+1 blocks of the positive generator
C           together; the first M-I+1 blocks of the negative generator
C           are contained in TA.
C
            STARTT = 3*( N + I - 2 )*K + 1
            STARTI = ( M - I + 1 )*K + 1
            STARTR = ( N + I - 1 )*K + 1
            IF ( I.EQ.1 ) THEN
               CALL DLACPY( 'All', (M-1)*K, K, R(1,STARTR-K), LDR,
     $                      R(K+1,STARTR), LDR )
            ELSE
               CALL DLACPY( 'Lower', (M-I+1)*K, K,
     $                      R((I-2)*K+1,STARTR-K), LDR,
     $                      R((I-1)*K+1,STARTR), LDR )
            END IF
C
C           Reduce the generator to proper form.
C
            CALL MB02CX( 'Column', K, K, K, R((I-1)*K+1,STARTR), LDR,
     $                   TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K, DWORK,
     $                   LDWORK, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
            IF ( M.GT.I ) THEN
               CALL MB02CY( 'Column', 'NoStructure', K, K, (M-I)*K, K,
     $                      R(I*K+1,STARTR), LDR, TA(I*K+1,1), LDTA,
     $                      TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K,
     $                      DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
            END IF
C
            IF ( COMPG ) THEN
C
C              Transformations acting on the inverse generator:
C
               CALL MB02CY( 'Column', 'Triangular', K, K, K, K,
     $                      G(1,K+1), LDG, G(STARTR,1), LDG,
     $                      TA((I-1)*K+1,1), LDTA, CS(STARTT), 3*K,
     $                      DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               CALL MB02CY( 'Column', 'NoStructure', K, K, (N+I-1)*K, K,
     $                      G(STARTI,K+1), LDG, G, LDG, TA((I-1)*K+1,1),
     $                      LDTA, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               IF ( COMPL ) THEN
                  CALL DLACPY( 'All', (N+I-1)*K, K, G(STARTI,K+1), LDG,
     $                         L(1,(I-1)*K+1), LDL )
                  CALL DLACPY( 'Upper', K, K, G(1,K+1), LDG,
     $                         L(STARTR,(I-1)*K+1), LDL )
               END IF
C
            END IF
   60    CONTINUE
C
      END IF
C
      DWORK(1) = MAXWRK
C
      RETURN
C
C *** Last line of MB02DD ***
      END