File: MB02ED.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (445 lines) | stat: -rw-r--r-- 16,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
      SUBROUTINE MB02ED( TYPET, K, N, NRHS, T, LDT, B, LDB, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve a system of linear equations  T*X = B  or  X*T = B  with
C     a symmetric positive definite (s.p.d.) block Toeplitz matrix T.
C     T is defined either by its first block row or its first block
C     column, depending on the parameter TYPET.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TYPET   CHARACTER*1
C             Specifies the type of T, as follows:
C             = 'R':  T contains the first block row of an s.p.d. block
C                     Toeplitz matrix, and the system X*T = B is solved;
C             = 'C':  T contains the first block column of an s.p.d.
C                     block Toeplitz matrix, and the system T*X = B is
C                     solved.
C             Note:   in the sequel, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of rows / columns in T, which should be equal
C             to the blocksize.  K >= 0.
C
C     N       (input)  INTEGER
C             The number of blocks in T.  N >= 0.
C
C     NRHS    (input)  INTEGER
C             The number of right hand sides.  NRHS >= 0.
C
C     T       (input/output)  DOUBLE PRECISION array, dimension
C             (LDT,N*K) / (LDT,K)
C             On entry, the leading K-by-N*K / N*K-by-K part of this
C             array must contain the first block row / column of an
C             s.p.d. block Toeplitz matrix.
C             On exit, if  INFO = 0  and  NRHS > 0,  then the leading
C             K-by-N*K / N*K-by-K part of this array contains the last
C             row / column of the Cholesky factor of inv(T).
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= MAX(1,K),    if TYPET = 'R';
C             LDT >= MAX(1,N*K),  if TYPET = 'C'.
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C             (LDB,N*K) / (LDB,NRHS)
C             On entry, the leading NRHS-by-N*K / N*K-by-NRHS part of
C             this array must contain the right hand side matrix B.
C             On exit, the leading NRHS-by-N*K / N*K-by-NRHS part of
C             this array contains the solution matrix X.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,NRHS),  if TYPET = 'R';
C             LDB >= MAX(1,N*K),   if TYPET = 'C'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -10,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,N*K*K+(N+2)*K).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed. The Toeplitz matrix
C                   associated with T is not (numerically) positive
C                   definite.
C
C     METHOD
C
C     Householder transformations, modified hyperbolic rotations and
C     block Gaussian eliminations are used in the Schur algorithm [1],
C     [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically equivalent with forming
C     the Cholesky factor R and the inverse Cholesky factor of T, using
C     the generalized Schur algorithm, and solving the systems of
C     equations  R*X = L*B  or  X*R = B*L by a blocked backward
C     substitution algorithm.
C                               3 2    2 2
C     The algorithm requires 0(K N  + K N NRHS) floating point
C     operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Chemnitz, Germany, December 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C     February 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TYPET
      INTEGER           INFO, K, LDB, LDT, LDWORK, N, NRHS
C     .. Array Arguments ..
      DOUBLE PRECISION  B(LDB,*), DWORK(*), T(LDT,*)
C     .. Local Scalars ..
      INTEGER           I, IERR, MAXWRK, STARTH, STARTI, STARTN,
     $                  STARTR, STARTT
      LOGICAL           ISROW
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DLACPY, DLASET, DPOTRF, DTRMM, DTRSM,
     $                  MB02CX, MB02CY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      ISROW = LSAME( TYPET, 'R' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF ( K.LT.0 ) THEN
         INFO = -2
      ELSE IF ( N.LT.0 ) THEN
         INFO = -3
      ELSE IF ( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
     $                   ( .NOT.ISROW .AND. LDT.LT.N*K ) ) THEN
         INFO = -6
      ELSE IF ( LDB.LT.1 .OR. ( ISROW .AND. LDB.LT.NRHS ) .OR.
     $                   ( .NOT.ISROW .AND. LDB.LT.N*K ) ) THEN
         INFO = -8
      ELSE IF ( LDWORK.LT.MAX( 1, N*K*K + ( N + 2 )*K ) ) THEN
         DWORK(1) = MAX( 1, N*K*K + ( N + 2 )*K )
         INFO = -10
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02ED', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( K, N, NRHS ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      MAXWRK = 0
      STARTN = 1
      STARTT = N*K*K  + 1
      STARTH = STARTT + 3*K
C
      IF ( ISROW ) THEN
C
C        T is the first block row of a block Toeplitz matrix.
C        Bring T to proper form by triangularizing its first block.
C
         CALL DPOTRF( 'Upper', K, T, LDT, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The matrix is not positive definite.
C
            INFO = 1
            RETURN
         END IF
C
         IF ( N.GT.1 )
     $      CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K,
     $                  (N-1)*K, ONE, T, LDT, T(1,K+1), LDT )
C
C        Initialize the generator, do the first Schur step and set
C        B = -B.
C        T contains the nonzero blocks of the positive parts in the
C        generator and the inverse generator.
C        DWORK(STARTN) contains the nonzero blocks of the negative parts
C        in the generator and the inverse generator.
C
         CALL DTRSM( 'Right', 'Upper', 'NonTranspose', 'NonUnit', NRHS,
     $               K, ONE, T, LDT, B, LDB )
         IF ( N.GT.1 )
     $      CALL DGEMM( 'NonTranspose', 'NonTranspose', NRHS, (N-1)*K,
     $                  K, ONE, B, LDB, T(1,K+1), LDT, -ONE, B(1,K+1),
     $                  LDB )
C
         CALL DLASET( 'All', K, K, ZERO, ONE, DWORK(STARTN), K )
         CALL DTRSM(  'Left', 'Upper', 'Transpose', 'NonUnit', K, K,
     $                ONE, T, LDT, DWORK(STARTN), K )
         IF ( N.GT.1 )
     $      CALL DLACPY( 'All', K, (N-1)*K, T(1,K+1), LDT,
     $                   DWORK(STARTN+K*K), K )
         CALL DLACPY( 'All', K, K, DWORK(STARTN), K, T(1,(N-1)*K+1),
     $                LDT )
C
         CALL DTRMM ( 'Right', 'Lower', 'NonTranspose', 'NonUnit', NRHS,
     $                K, ONE, T(1,(N-1)*K+1), LDT, B, LDB )
C
C        Processing the generator.
C
         DO 10  I = 2, N
            STARTR = ( I - 1 )*K + 1
            STARTI = ( N - I )*K + 1
C
C           Transform the generator of T to proper form.
C
            CALL MB02CX( 'Row', K, K, K, T, LDT,
     $                   DWORK(STARTN+(I-1)*K*K), K, DWORK(STARTT), 3*K,
     $                   DWORK(STARTH), LDWORK-STARTH+1, IERR )
C
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
            CALL MB02CY( 'Row', 'NoStructure', K, K, (N-I)*K, K,
     $                    T(1,K+1), LDT, DWORK(STARTN+I*K*K), K,
     $                    DWORK(STARTN+(I-1)*K*K), K, DWORK(STARTT),
     $                    3*K, DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Block Gaussian eliminates the i-th block in B.
C
            CALL DTRSM( 'Right', 'Upper', 'NonTranspose', 'NonUnit',
     $                  NRHS, K, -ONE, T, LDT, B(1,STARTR), LDB )
            IF ( N.GT.I )
     $         CALL DGEMM( 'NonTranspose', 'NonTranspose', NRHS,
     $                     (N-I)*K, K, ONE, B(1,STARTR), LDB, T(1,K+1),
     $                     LDT, ONE, B(1,STARTR+K), LDB )
C
C           Apply hyperbolic transformations on the negative generator.
C
            CALL DLASET( 'All', K, K, ZERO, ZERO, T(1,STARTI), LDT )
            CALL MB02CY( 'Row', 'NoStructure', K, K, (I-1)*K, K,
     $                   T(1,STARTI), LDT, DWORK(STARTN), K,
     $                   DWORK(STARTN+(I-1)*K*K), K, DWORK(STARTT), 3*K,
     $                   DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Note that  DWORK(STARTN+(I-1)*K*K)  serves simultaneously
C           as the transformation container as well as the new block in
C           the negative generator.
C
            CALL MB02CY( 'Row', 'Triangular', K, K, K, K,
     $                   T(1,(N-1)*K+1), LDT, DWORK(STARTN+(I-1)*K*K),
     $                   K, DWORK(STARTN+(I-1)*K*K), K, DWORK(STARTT),
     $                   3*K, DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Finally the Gaussian elimination is applied on the inverse
C           generator.
C
            CALL DGEMM( 'NonTranspose', 'NonTranspose', NRHS, (I-1)*K,
     $                  K, ONE, B(1,STARTR), LDB, T(1,STARTI), LDT, ONE,
     $                  B, LDB )
            CALL DTRMM( 'Right', 'Lower', 'NonTranspose', 'NonUnit',
     $                  NRHS, K, ONE, T(1,(N-1)*K+1), LDT, B(1,STARTR),
     $                  LDB )
   10    CONTINUE
C
      ELSE
C
C        T is the first block column of a block Toeplitz matrix.
C        Bring T to proper form by triangularizing its first block.
C
         CALL DPOTRF( 'Lower', K, T, LDT, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The matrix is not positive definite.
C
            INFO = 1
            RETURN
         END IF
C
         IF ( N.GT.1 )
     $      CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit',
     $                  (N-1)*K, K, ONE, T, LDT, T(K+1,1), LDT )
C
C        Initialize the generator, do the first Schur step and set
C        B = -B.
C        T contains the nonzero blocks of the positive parts in the
C        generator and the inverse generator.
C        DWORK(STARTN) contains the nonzero blocks of the negative parts
C        in the generator and the inverse generator.
C
         CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit', K,
     $               NRHS, ONE, T, LDT, B, LDB )
         IF ( N.GT.1 )
     $      CALL DGEMM( 'NonTranspose', 'NonTranspose', (N-1)*K, NRHS,
     $                  K, ONE, T(K+1,1), LDT, B, LDB, -ONE, B(K+1,1),
     $                  LDB )
C
         CALL DLASET( 'All', K, K, ZERO, ONE, DWORK(STARTN), N*K )
         CALL DTRSM(  'Right', 'Lower', 'Transpose', 'NonUnit', K, K,
     $                ONE, T, LDT, DWORK(STARTN), N*K )
         IF ( N.GT.1 )
     $      CALL DLACPY( 'All', (N-1)*K, K, T(K+1,1), LDT,
     $                   DWORK(STARTN+K), N*K )
         CALL DLACPY( 'All', K, K, DWORK(STARTN), N*K, T((N-1)*K+1,1),
     $                LDT )
C
         CALL DTRMM ( 'Left', 'Upper', 'NonTranspose', 'NonUnit', K,
     $                NRHS, ONE, T((N-1)*K+1,1), LDT, B, LDB )
C
C        Processing the generator.
C
         DO 20  I = 2, N
            STARTR = ( I - 1 )*K + 1
            STARTI = ( N - I )*K + 1
C
C           Transform the generator of T to proper form.
C
            CALL MB02CX( 'Column', K, K, K, T, LDT,
     $                   DWORK(STARTN+(I-1)*K), N*K, DWORK(STARTT), 3*K,
     $                   DWORK(STARTH), LDWORK-STARTH+1, IERR )
C
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
            CALL MB02CY( 'Column', 'NoStructure', K, K, (N-I)*K, K,
     $                   T(K+1,1), LDT, DWORK(STARTN+I*K), N*K,
     $                   DWORK(STARTN+(I-1)*K), N*K, DWORK(STARTT),
     $                   3*K, DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Block Gaussian eliminates the i-th block in B.
C
            CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit', K,
     $                  NRHS, -ONE, T, LDT, B(STARTR,1), LDB )
            IF ( N.GT.I )
     $         CALL DGEMM( 'NonTranspose', 'NonTranspose', (N-I)*K,
     $                     NRHS, K, ONE, T(K+1,1), LDT, B(STARTR,1),
     $                     LDB, ONE, B(STARTR+K,1), LDB )
C
C           Apply hyperbolic transformations on the negative generator.
C
            CALL DLASET( 'All', K, K, ZERO, ZERO, T(STARTI,1), LDT )
            CALL MB02CY( 'Column', 'NoStructure', K, K, (I-1)*K, K,
     $                   T(STARTI,1), LDT, DWORK(STARTN), N*K,
     $                   DWORK(STARTN+(I-1)*K), N*K, DWORK(STARTT), 3*K,
     $                   DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Note that  DWORK(STARTN+(I-1)*K)  serves simultaneously
C           as the transformation container as well as the new block in
C           the negative generator.
C
            CALL MB02CY( 'Column', 'Triangular', K, K, K, K,
     $                   T((N-1)*K+1,1), LDT, DWORK(STARTN+(I-1)*K),
     $                   N*K, DWORK(STARTN+(I-1)*K), N*K, DWORK(STARTT),
     $                   3*K, DWORK(STARTH), LDWORK-STARTH+1, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(STARTH) ) )
C
C           Finally the Gaussian elimination is applied on the inverse
C           generator.
C
            CALL DGEMM( 'NonTranspose', 'NonTranspose', (I-1)*K, NRHS,
     $                  K, ONE, T(STARTI,1), LDT, B(STARTR,1), LDB, ONE,
     $                  B, LDB )
            CALL DTRMM( 'Left', 'Upper', 'NonTranspose', 'NonUnit',
     $                  K, NRHS, ONE, T((N-1)*K+1,1), LDT, B(STARTR,1),
     $                  LDB )
C
   20    CONTINUE
C
      END IF
C
      DWORK(1) = MAX( 1, STARTH - 1 + MAXWRK )
C
      RETURN
C
C *** Last line of MB02ED ***
      END