File: MB02FD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (383 lines) | stat: -rw-r--r-- 13,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
      SUBROUTINE MB02FD( TYPET, K, N, P, S, T, LDT, R, LDR, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the incomplete Cholesky (ICC) factor of a symmetric
C     positive definite (s.p.d.) block Toeplitz matrix T, defined by
C     either its first block row, or its first block column, depending
C     on the routine parameter TYPET.
C
C     By subsequent calls of this routine, further rows / columns of
C     the Cholesky factor can be added.
C     Furthermore, the generator of the Schur complement of the leading
C     (P+S)*K-by-(P+S)*K block in T is available, which can be used,
C     e.g., for measuring the quality of the ICC factorization.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TYPET   CHARACTER*1
C             Specifies the type of T, as follows:
C             = 'R':  T contains the first block row of an s.p.d. block
C                     Toeplitz matrix; the ICC factor R is upper
C                     trapezoidal;
C             = 'C':  T contains the first block column of an s.p.d.
C                     block Toeplitz matrix; the ICC factor R is lower
C                     trapezoidal; this choice leads to better
C                     localized memory references and hence a faster
C                     algorithm.
C             Note:   in the sequel, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of rows / columns in T, which should be equal
C             to the blocksize.  K >= 0.
C
C     N       (input)  INTEGER
C             The number of blocks in T.  N >= 0.
C
C     P       (input)  INTEGER
C             The number of previously computed block rows / columns
C             of R.  0 <= P <= N.
C
C     S       (input)  INTEGER
C             The number of block rows / columns of R to compute.
C             0 <= S <= N-P.
C
C     T       (input/output)  DOUBLE PRECISION array, dimension
C             (LDT,(N-P)*K) / (LDT,K)
C             On entry, if P = 0, then the leading K-by-N*K / N*K-by-K
C             part of this array must contain the first block row /
C             column of an s.p.d. block Toeplitz matrix.
C             If P > 0, the leading K-by-(N-P)*K / (N-P)*K-by-K must
C             contain the negative generator of the Schur complement of
C             the leading P*K-by-P*K part in T, computed from previous
C             calls of this routine.
C             On exit, if INFO = 0, then the leading K-by-(N-P)*K /
C             (N-P)*K-by-K part of this array contains, in the first
C             K-by-K block, the upper / lower Cholesky factor of
C             T(1:K,1:K), in the following S-1 K-by-K blocks, the
C             Householder transformations applied during the process,
C             and in the remaining part, the negative generator of the
C             Schur complement of the leading (P+S)*K-by(P+S)*K part
C             in T.
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= MAX(1,K),        if TYPET = 'R';
C             LDT >= MAX(1,(N-P)*K),  if TYPET = 'C'.
C
C     R       (input/output)  DOUBLE PRECISION array, dimension
C             (LDR, N*K)       / (LDR, S*K )     if P = 0;
C             (LDR, (N-P+1)*K) / (LDR, (S+1)*K ) if P > 0.
C             On entry, if P > 0, then the leading K-by-(N-P+1)*K /
C             (N-P+1)*K-by-K part of this array must contain the
C             nonzero blocks of the last block row / column in the
C             ICC factor from a previous call of this routine. Note that
C             this part is identical with the positive generator of
C             the Schur complement of the leading P*K-by-P*K part in T.
C             If P = 0, then R is only an output parameter.
C             On exit, if INFO = 0 and P = 0, then the leading
C             S*K-by-N*K / N*K-by-S*K part of this array contains the
C             upper / lower trapezoidal ICC factor.
C             On exit, if INFO = 0 and P > 0, then the leading
C             (S+1)*K-by-(N-P+1)*K / (N-P+1)*K-by-(S+1)*K part of this
C             array contains the upper / lower trapezoidal part of the
C             P-th to (P+S)-th block rows / columns of the ICC factor.
C             The elements in the strictly lower / upper trapezoidal
C             part are not referenced.
C
C     LDR     INTEGER
C             The leading dimension of the array R.
C             LDR >= MAX(1, S*K ),        if TYPET = 'R' and P = 0;
C             LDR >= MAX(1, (S+1)*K ),    if TYPET = 'R' and P > 0;
C             LDR >= MAX(1, N*K ),        if TYPET = 'C' and P = 0;
C             LDR >= MAX(1, (N-P+1)*K ),  if TYPET = 'C' and P > 0.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -11,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,(N+1)*K,4*K),   if P = 0;
C             LDWORK >= MAX(1,(N-P+2)*K,4*K), if P > 0.
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed; the Toeplitz matrix
C                   associated with T is not (numerically) positive
C                   definite in its leading (P+S)*K-by-(P+S)*K part.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C                               3
C     The algorithm requires 0(K S (N-P)) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, April 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001,
C     Mar. 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE
      PARAMETER         ( ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TYPET
      INTEGER           INFO, K, LDR, LDT, LDWORK, N, P, S
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(*), R(LDR,*), T(LDT,*)
C     .. Local Scalars ..
      INTEGER           COUNTR, I, IERR, MAXWRK, ST, STARTR
      LOGICAL           ISROW
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLACPY, DPOTRF, DTRSM, MB02CX, MB02CY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      ISROW = LSAME( TYPET, 'R' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF ( K.LT.0 ) THEN
         INFO = -2
      ELSE IF ( N.LT.0 ) THEN
         INFO = -3
      ELSE IF ( P.LT.0 .OR. P.GT.N ) THEN
         INFO = -4
      ELSE IF ( S.LT.0 .OR. S.GT.( N-P ) ) THEN
         INFO = -5
      ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
     $                   ( .NOT.ISROW .AND. LDT.LT.( N-P )*K ) ) THEN
         INFO = -7
      ELSE IF ( LDR.LT.1 .OR.
     $        ( ISROW .AND. P.EQ.0 .AND. ( LDR.LT.S*K ) ) .OR.
     $        ( ISROW .AND. P.GT.0 .AND. ( LDR.LT.( S+1 )*K ) ) .OR.
     $   ( .NOT.ISROW .AND. P.EQ.0 .AND. ( LDR.LT.N*K ) ) .OR.
     $   ( .NOT.ISROW .AND. P.GT.0 .AND. ( LDR.LT.( N-P+1 )*K ) ) ) THEN
        INFO = -9
      ELSE
         IF ( P.EQ.0 ) THEN
            COUNTR = ( N + 1 )*K
         ELSE
            COUNTR = ( N - P + 2 )*K
         END IF
         COUNTR = MAX( COUNTR, 4*K )
         IF ( LDWORK.LT.MAX( 1, COUNTR ) ) THEN
            DWORK(1) = MAX( 1, COUNTR )
            INFO = -11
         END IF
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02FD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( K, N, S ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      MAXWRK = 1
C
      IF ( ISROW ) THEN
C
         IF ( P.EQ.0 ) THEN
C
C           T is the first block row of a block Toeplitz matrix.
C           Bring T to proper form by triangularizing its first block.
C
            CALL DPOTRF( 'Upper', K, T, LDT, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            IF ( N.GT.1 )
     $         CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K,
     $                     (N-1)*K, ONE, T, LDT, T(1,K+1), LDT )
            CALL DLACPY( 'Upper', K, N*K, T, LDT, R, LDR )
C
            IF ( S.EQ.1 ) THEN
               DWORK(1) = ONE
               RETURN
            END IF
C
            ST = 2
            COUNTR = ( N - 1 )*K
         ELSE
            ST = 1
            COUNTR = ( N - P )*K
         END IF
C
         STARTR = 1
C
         DO 10 I = ST, S
            CALL DLACPY( 'Upper', K, COUNTR, R(STARTR,STARTR), LDR,
     $                   R(STARTR+K,STARTR+K), LDR )
            STARTR = STARTR + K
            COUNTR = COUNTR - K
            CALL MB02CX( 'Row', K, K, K, R(STARTR,STARTR), LDR,
     $                   T(1,STARTR), LDT, DWORK, 3*K, DWORK(3*K+1),
     $                   LDWORK-3*K, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
            CALL MB02CY( 'Row', 'NoStructure', K, K, COUNTR, K,
     $                   R(STARTR,STARTR+K), LDR, T(1,STARTR+K), LDT,
     $                   T(1,STARTR), LDT, DWORK, 3*K, DWORK(3*K+1),
     $                   LDWORK-3*K, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
  10     CONTINUE
C
      ELSE
C
         IF ( P.EQ.0 ) THEN
C
C           T is the first block column of a block Toeplitz matrix.
C           Bring T to proper form by triangularizing its first block.
C
            CALL DPOTRF( 'Lower', K, T, LDT, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            IF ( N.GT.1 )
     $         CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit',
     $                     (N-1)*K, K, ONE, T, LDT, T(K+1,1), LDT )
            CALL DLACPY( 'Lower', N*K, K, T, LDT, R, LDR )
C
            IF ( S.EQ.1 ) THEN
               DWORK(1) = ONE
               RETURN
            END IF
C
            ST = 2
            COUNTR = ( N - 1 )*K
         ELSE
            ST = 1
            COUNTR = ( N - P )*K
         END IF
C
         STARTR = 1
C
         DO 20 I = ST, S
            CALL DLACPY( 'Lower', COUNTR, K, R(STARTR,STARTR), LDR,
     $                   R(STARTR+K,STARTR+K), LDR )
            STARTR = STARTR + K
            COUNTR = COUNTR - K
            CALL MB02CX( 'Column', K, K, K, R(STARTR,STARTR), LDR,
     $                   T(STARTR,1), LDT, DWORK, 3*K, DWORK(3*K+1),
     $                   LDWORK-3*K, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
C
            MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
            CALL MB02CY( 'Column', 'NoStructure', K, K, COUNTR, K,
     $                   R(STARTR+K,STARTR), LDR, T(STARTR+K,1), LDT,
     $                   T(STARTR,1), LDT, DWORK, 3*K, DWORK(3*K+1),
     $                   LDWORK-3*K, IERR )
            MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
  20     CONTINUE
C
      END IF
C
      DWORK(1) = MAXWRK
C
      RETURN
C
C *** Last line of MB02FD ***
      END