1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
SUBROUTINE MB02FD( TYPET, K, N, P, S, T, LDT, R, LDR, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the incomplete Cholesky (ICC) factor of a symmetric
C positive definite (s.p.d.) block Toeplitz matrix T, defined by
C either its first block row, or its first block column, depending
C on the routine parameter TYPET.
C
C By subsequent calls of this routine, further rows / columns of
C the Cholesky factor can be added.
C Furthermore, the generator of the Schur complement of the leading
C (P+S)*K-by-(P+S)*K block in T is available, which can be used,
C e.g., for measuring the quality of the ICC factorization.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPET CHARACTER*1
C Specifies the type of T, as follows:
C = 'R': T contains the first block row of an s.p.d. block
C Toeplitz matrix; the ICC factor R is upper
C trapezoidal;
C = 'C': T contains the first block column of an s.p.d.
C block Toeplitz matrix; the ICC factor R is lower
C trapezoidal; this choice leads to better
C localized memory references and hence a faster
C algorithm.
C Note: in the sequel, the notation x / y means that
C x corresponds to TYPET = 'R' and y corresponds to
C TYPET = 'C'.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows / columns in T, which should be equal
C to the blocksize. K >= 0.
C
C N (input) INTEGER
C The number of blocks in T. N >= 0.
C
C P (input) INTEGER
C The number of previously computed block rows / columns
C of R. 0 <= P <= N.
C
C S (input) INTEGER
C The number of block rows / columns of R to compute.
C 0 <= S <= N-P.
C
C T (input/output) DOUBLE PRECISION array, dimension
C (LDT,(N-P)*K) / (LDT,K)
C On entry, if P = 0, then the leading K-by-N*K / N*K-by-K
C part of this array must contain the first block row /
C column of an s.p.d. block Toeplitz matrix.
C If P > 0, the leading K-by-(N-P)*K / (N-P)*K-by-K must
C contain the negative generator of the Schur complement of
C the leading P*K-by-P*K part in T, computed from previous
C calls of this routine.
C On exit, if INFO = 0, then the leading K-by-(N-P)*K /
C (N-P)*K-by-K part of this array contains, in the first
C K-by-K block, the upper / lower Cholesky factor of
C T(1:K,1:K), in the following S-1 K-by-K blocks, the
C Householder transformations applied during the process,
C and in the remaining part, the negative generator of the
C Schur complement of the leading (P+S)*K-by(P+S)*K part
C in T.
C
C LDT INTEGER
C The leading dimension of the array T.
C LDT >= MAX(1,K), if TYPET = 'R';
C LDT >= MAX(1,(N-P)*K), if TYPET = 'C'.
C
C R (input/output) DOUBLE PRECISION array, dimension
C (LDR, N*K) / (LDR, S*K ) if P = 0;
C (LDR, (N-P+1)*K) / (LDR, (S+1)*K ) if P > 0.
C On entry, if P > 0, then the leading K-by-(N-P+1)*K /
C (N-P+1)*K-by-K part of this array must contain the
C nonzero blocks of the last block row / column in the
C ICC factor from a previous call of this routine. Note that
C this part is identical with the positive generator of
C the Schur complement of the leading P*K-by-P*K part in T.
C If P = 0, then R is only an output parameter.
C On exit, if INFO = 0 and P = 0, then the leading
C S*K-by-N*K / N*K-by-S*K part of this array contains the
C upper / lower trapezoidal ICC factor.
C On exit, if INFO = 0 and P > 0, then the leading
C (S+1)*K-by-(N-P+1)*K / (N-P+1)*K-by-(S+1)*K part of this
C array contains the upper / lower trapezoidal part of the
C P-th to (P+S)-th block rows / columns of the ICC factor.
C The elements in the strictly lower / upper trapezoidal
C part are not referenced.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX(1, S*K ), if TYPET = 'R' and P = 0;
C LDR >= MAX(1, (S+1)*K ), if TYPET = 'R' and P > 0;
C LDR >= MAX(1, N*K ), if TYPET = 'C' and P = 0;
C LDR >= MAX(1, (N-P+1)*K ), if TYPET = 'C' and P > 0.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -11, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,(N+1)*K,4*K), if P = 0;
C LDWORK >= MAX(1,(N-P+2)*K,4*K), if P > 0.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction algorithm failed; the Toeplitz matrix
C associated with T is not (numerically) positive
C definite in its leading (P+S)*K-by-(P+S)*K part.
C
C METHOD
C
C Householder transformations and modified hyperbolic rotations
C are used in the Schur algorithm [1], [2].
C
C REFERENCES
C
C [1] Kailath, T. and Sayed, A.
C Fast Reliable Algorithms for Matrices with Structure.
C SIAM Publications, Philadelphia, 1999.
C
C [2] Kressner, D. and Van Dooren, P.
C Factorizations and linear system solvers for matrices with
C Toeplitz structure.
C SLICOT Working Note 2000-2, 2000.
C
C NUMERICAL ASPECTS
C
C The implemented method is numerically stable.
C 3
C The algorithm requires 0(K S (N-P)) floating point operations.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, April 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001,
C Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER TYPET
INTEGER INFO, K, LDR, LDT, LDWORK, N, P, S
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), R(LDR,*), T(LDT,*)
C .. Local Scalars ..
INTEGER COUNTR, I, IERR, MAXWRK, ST, STARTR
LOGICAL ISROW
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLACPY, DPOTRF, DTRSM, MB02CX, MB02CY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
ISROW = LSAME( TYPET, 'R' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
INFO = -1
ELSE IF ( K.LT.0 ) THEN
INFO = -2
ELSE IF ( N.LT.0 ) THEN
INFO = -3
ELSE IF ( P.LT.0 .OR. P.GT.N ) THEN
INFO = -4
ELSE IF ( S.LT.0 .OR. S.GT.( N-P ) ) THEN
INFO = -5
ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
$ ( .NOT.ISROW .AND. LDT.LT.( N-P )*K ) ) THEN
INFO = -7
ELSE IF ( LDR.LT.1 .OR.
$ ( ISROW .AND. P.EQ.0 .AND. ( LDR.LT.S*K ) ) .OR.
$ ( ISROW .AND. P.GT.0 .AND. ( LDR.LT.( S+1 )*K ) ) .OR.
$ ( .NOT.ISROW .AND. P.EQ.0 .AND. ( LDR.LT.N*K ) ) .OR.
$ ( .NOT.ISROW .AND. P.GT.0 .AND. ( LDR.LT.( N-P+1 )*K ) ) ) THEN
INFO = -9
ELSE
IF ( P.EQ.0 ) THEN
COUNTR = ( N + 1 )*K
ELSE
COUNTR = ( N - P + 2 )*K
END IF
COUNTR = MAX( COUNTR, 4*K )
IF ( LDWORK.LT.MAX( 1, COUNTR ) ) THEN
DWORK(1) = MAX( 1, COUNTR )
INFO = -11
END IF
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02FD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( K, N, S ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
MAXWRK = 1
C
IF ( ISROW ) THEN
C
IF ( P.EQ.0 ) THEN
C
C T is the first block row of a block Toeplitz matrix.
C Bring T to proper form by triangularizing its first block.
C
CALL DPOTRF( 'Upper', K, T, LDT, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
IF ( N.GT.1 )
$ CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K,
$ (N-1)*K, ONE, T, LDT, T(1,K+1), LDT )
CALL DLACPY( 'Upper', K, N*K, T, LDT, R, LDR )
C
IF ( S.EQ.1 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
ST = 2
COUNTR = ( N - 1 )*K
ELSE
ST = 1
COUNTR = ( N - P )*K
END IF
C
STARTR = 1
C
DO 10 I = ST, S
CALL DLACPY( 'Upper', K, COUNTR, R(STARTR,STARTR), LDR,
$ R(STARTR+K,STARTR+K), LDR )
STARTR = STARTR + K
COUNTR = COUNTR - K
CALL MB02CX( 'Row', K, K, K, R(STARTR,STARTR), LDR,
$ T(1,STARTR), LDT, DWORK, 3*K, DWORK(3*K+1),
$ LDWORK-3*K, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
CALL MB02CY( 'Row', 'NoStructure', K, K, COUNTR, K,
$ R(STARTR,STARTR+K), LDR, T(1,STARTR+K), LDT,
$ T(1,STARTR), LDT, DWORK, 3*K, DWORK(3*K+1),
$ LDWORK-3*K, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
10 CONTINUE
C
ELSE
C
IF ( P.EQ.0 ) THEN
C
C T is the first block column of a block Toeplitz matrix.
C Bring T to proper form by triangularizing its first block.
C
CALL DPOTRF( 'Lower', K, T, LDT, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
IF ( N.GT.1 )
$ CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit',
$ (N-1)*K, K, ONE, T, LDT, T(K+1,1), LDT )
CALL DLACPY( 'Lower', N*K, K, T, LDT, R, LDR )
C
IF ( S.EQ.1 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
ST = 2
COUNTR = ( N - 1 )*K
ELSE
ST = 1
COUNTR = ( N - P )*K
END IF
C
STARTR = 1
C
DO 20 I = ST, S
CALL DLACPY( 'Lower', COUNTR, K, R(STARTR,STARTR), LDR,
$ R(STARTR+K,STARTR+K), LDR )
STARTR = STARTR + K
COUNTR = COUNTR - K
CALL MB02CX( 'Column', K, K, K, R(STARTR,STARTR), LDR,
$ T(STARTR,1), LDT, DWORK, 3*K, DWORK(3*K+1),
$ LDWORK-3*K, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The matrix is not positive definite.
C
INFO = 1
RETURN
END IF
C
MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
CALL MB02CY( 'Column', 'NoStructure', K, K, COUNTR, K,
$ R(STARTR+K,STARTR), LDR, T(STARTR+K,1), LDT,
$ T(STARTR,1), LDT, DWORK, 3*K, DWORK(3*K+1),
$ LDWORK-3*K, IERR )
MAXWRK = MAX( MAXWRK, INT( DWORK(3*K+1) ) + 3*K )
20 CONTINUE
C
END IF
C
DWORK(1) = MAXWRK
C
RETURN
C
C *** Last line of MB02FD ***
END
|