File: MB02GD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (558 lines) | stat: -rw-r--r-- 19,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
      SUBROUTINE MB02GD( TYPET, TRIU, K, N, NL, P, S, T, LDT, RB, LDRB,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the Cholesky factor of a banded symmetric positive
C     definite (s.p.d.) block Toeplitz matrix, defined by either its
C     first block row, or its first block column, depending on the
C     routine parameter TYPET.
C
C     By subsequent calls of this routine the Cholesky factor can be
C     computed block column by block column.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TYPET   CHARACTER*1
C             Specifies the type of T, as follows:
C             = 'R':  T contains the first block row of an s.p.d. block
C                     Toeplitz matrix; the Cholesky factor is upper
C                     triangular;
C             = 'C':  T contains the first block column of an s.p.d.
C                     block Toeplitz matrix; the Cholesky factor is
C                     lower triangular. This choice results in a column
C                     oriented algorithm which is usually faster.
C             Note:   in the sequel, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     TRIU    CHARACTER*1
C             Specifies the structure of the last block in T, as
C             follows:
C             = 'N':  the last block has no special structure;
C             = 'T':  the last block is lower / upper triangular.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of rows / columns in T, which should be equal
C             to the blocksize.  K >= 0.
C
C     N       (input)  INTEGER
C             The number of blocks in T.  N >= 1.
C             If TRIU = 'N',   N >= 1;
C             if TRIU = 'T',   N >= 2.
C
C     NL      (input)  INTEGER
C             The lower block bandwidth, i.e., NL + 1 is the number of
C             nonzero blocks in the first block column of the block
C             Toeplitz matrix.
C             If TRIU = 'N',   0 <= NL < N;
C             if TRIU = 'T',   1 <= NL < N.
C
C     P       (input)  INTEGER
C             The number of previously computed block rows / columns of
C             the Cholesky factor.  0 <= P <= N.
C
C     S       (input)  INTEGER
C             The number of block rows / columns of the Cholesky factor
C             to compute.  0 <= S <= N - P.
C
C     T       (input/output)  DOUBLE PRECISION array, dimension
C             (LDT,(NL+1)*K) / (LDT,K)
C             On entry, if P = 0, the leading K-by-(NL+1)*K /
C             (NL+1)*K-by-K part of this array must contain the first
C             block row / column of an s.p.d. block Toeplitz matrix.
C             On entry, if P > 0, the leading K-by-(NL+1)*K /
C             (NL+1)*K-by-K part of this array must contain the P-th
C             block row / column of the Cholesky factor.
C             On exit, if INFO = 0, then the leading K-by-(NL+1)*K /
C             (NL+1)*K-by-K part of this array contains the (P+S)-th
C             block row / column of the Cholesky factor.
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= MAX(1,K) / MAX(1,(NL+1)*K).
C
C     RB      (input/output)  DOUBLE PRECISION array, dimension
C             (LDRB,MIN(P+NL+S,N)*K) / (LDRB,MIN(P+S,N)*K)
C             On entry, if TYPET = 'R'  and  TRIU = 'N'  and  P > 0,
C             the leading (NL+1)*K-by-MIN(NL,N-P)*K part of this array
C             must contain the (P*K+1)-st to ((P+NL)*K)-th columns
C             of the upper Cholesky factor in banded format from a
C             previous call of this routine.
C             On entry, if TYPET = 'R'  and  TRIU = 'T'  and  P > 0,
C             the leading (NL*K+1)-by-MIN(NL,N-P)*K part of this array
C             must contain the (P*K+1)-st to (MIN(P+NL,N)*K)-th columns
C             of the upper Cholesky factor in banded format from a
C             previous call of this routine.
C             On exit, if TYPET = 'R'  and  TRIU = 'N', the leading
C             (NL+1)*K-by-MIN(NL+S,N-P)*K part of this array contains
C             the (P*K+1)-st to (MIN(P+NL+S,N)*K)-th columns of the
C             upper Cholesky factor in banded format.
C             On exit, if TYPET = 'R'  and  TRIU = 'T', the leading
C             (NL*K+1)-by-MIN(NL+S,N-P)*K part of this array contains
C             the (P*K+1)-st to (MIN(P+NL+S,N)*K)-th columns of the
C             upper Cholesky factor in banded format.
C             On exit, if TYPET = 'C'  and  TRIU = 'N', the leading
C             (NL+1)*K-by-MIN(S,N-P)*K part of this array contains
C             the (P*K+1)-st to (MIN(P+S,N)*K)-th columns of the lower
C             Cholesky factor in banded format.
C             On exit, if TYPET = 'C'  and  TRIU = 'T', the leading
C             (NL*K+1)-by-MIN(S,N-P)*K part of this array contains
C             the (P*K+1)-st to (MIN(P+S,N)*K)-th columns of the lower
C             Cholesky factor in banded format.
C             For further details regarding the band storage scheme see
C             the documentation of the LAPACK routine DPBTF2.
C
C     LDRB    INTEGER
C             The leading dimension of the array RB.
C             If TRIU = 'N',   LDRB >= MAX( (NL+1)*K,1 );
C             if TRIU = 'T',   LDRB >= NL*K+1.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -13,  DWORK(1)  returns the minimum
C             value of LDWORK.
C             The first 1 + ( NL + 1 )*K*K elements of DWORK should be
C             preserved during successive calls of the routine.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1 + ( NL + 1 )*K*K + NL*K.
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed. The Toeplitz matrix
C                   associated with T is not (numerically) positive
C                   definite.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C                                3
C     The algorithm requires O( K *N*NL ) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, June 2001,
C     Mar. 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TRIU, TYPET
      INTEGER           INFO, K, LDRB, LDT, LDWORK, N, NL, P, S
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(LDWORK), RB(LDRB,*), T(LDT,*)
C     .. Local Scalars ..
      CHARACTER         STRUCT
      LOGICAL           ISROW, LTRI
      INTEGER           HEAD, I, IERR, J, JJ, KK, LEN, LEN2, LENR, NB,
     $                  NBMIN, PDW, POSR, PRE, RNK, SIZR, STPS, WRKMIN,
     $                  WRKOPT
C     .. Local Arrays ..
      INTEGER           IPVT(1)
      DOUBLE PRECISION  DUM(1)
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      EXTERNAL          ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLACPY, DLASET, DPOTRF, DTRSM, MB02CU,
     $                  MB02CV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN, MOD
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO = 0
      LTRI = LSAME( TRIU, 'T' )
      LENR = ( NL + 1 )*K
      IF ( LTRI ) THEN
         SIZR = NL*K + 1
      ELSE
         SIZR = LENR
      END IF
      ISROW  = LSAME( TYPET, 'R' )
      WRKMIN = 1 + ( LENR + NL )*K
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( LTRI .OR. LSAME( TRIU, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( (      LTRI .AND. N.LT.2 ) .OR.
     $          ( .NOT.LTRI .AND. N.LT.1 ) ) THEN
         INFO = -4
      ELSE IF ( NL.GE.N .OR. (      LTRI .AND. NL.LT.1 ) .OR.
     $                       ( .NOT.LTRI .AND. NL.LT.0 ) ) THEN
         INFO = -5
      ELSE IF ( P.LT.0 .OR. P.GT.N ) THEN
         INFO = -6
      ELSE IF ( S.LT.0 .OR. S.GT.N-P ) THEN
         INFO = -7
      ELSE IF ( (      ISROW .AND. LDT.LT.MAX( 1, K ) ) .OR.
     $          ( .NOT.ISROW .AND. LDT.LT.MAX( 1, LENR ) ) )
     $      THEN
         INFO = -9
      ELSE IF ( (      LTRI .AND. LDRB.LT.SIZR ) .OR.
     $          ( .NOT.LTRI .AND. LDRB.LT.MAX( 1, LENR ) ) )
     $      THEN
         INFO = -11
      ELSE IF ( LDWORK.LT.WRKMIN ) THEN
         DWORK(1) = DBLE( WRKMIN )
         INFO = -13
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02GD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( S*K.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute the generator if P = 0.
C
      IF ( P.EQ.0 ) THEN
         IF ( ISROW ) THEN
            CALL DPOTRF( 'Upper', K, T, LDT, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
            IF ( NL.GT.0 )
     $         CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K,
     $                     NL*K, ONE, T, LDT, T(1,K+1), LDT )
C
C           Copy the first block row to RB.
C
            IF ( LTRI ) THEN
C
               DO 10  I = 1, LENR - K
                  CALL DCOPY( MIN( I, K ), T(1,I), 1,
     $                        RB( MAX( SIZR-I+1, 1 ),I ), 1 )
   10          CONTINUE
C
               DO 20  I = K, 1, -1
                  CALL DCOPY( I, T(K-I+1,LENR-I+1), 1,
     $                        RB( 1,LENR-I+1 ), 1 )
   20          CONTINUE
C
            ELSE
C
               DO 30  I = 1, LENR
                  CALL DCOPY( MIN( I, K ), T(1,I), 1,
     $                        RB( MAX( SIZR-I+1, 1 ),I ), 1 )
   30          CONTINUE
C
            END IF
C
C           Quick return if N = 1.
C
            IF ( N.EQ.1 ) THEN
               DWORK(1) = ONE
               RETURN
            END IF
C
            CALL DLACPY( 'All', K, NL*K, T(1,K+1), LDT, DWORK(2), K )
            CALL DLASET( 'All', K, K, ZERO, ZERO, DWORK(NL*K*K+2), K )
            POSR = K + 1
         ELSE
            CALL DPOTRF( 'Lower', K, T, LDT, IERR )
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The matrix is not positive definite.
C
               INFO = 1
               RETURN
            END IF
            IF ( NL.GT.0 )
     $         CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit',
     $                     NL*K, K, ONE, T, LDT, T(K+1,1), LDT )
C
C           Copy the first block column to RB.
C
            POSR = 1
            IF ( LTRI ) THEN
C
               DO 40  I = 1, K
                  CALL DCOPY( SIZR, T(I,I), 1, RB(1,POSR), 1 )
                  POSR = POSR + 1
   40          CONTINUE
C
            ELSE
C
               DO 50  I = 1, K
                  CALL DCOPY(  LENR-I+1, T(I,I), 1, RB(1,POSR), 1 )
                  IF ( LENR.LT.N*K .AND. I.GT.1 ) THEN
                     CALL DLASET( 'All', I-1, 1, ZERO, ZERO,
     $                            RB(LENR-I+2,POSR), LDRB )
                  END IF
                  POSR = POSR + 1
   50          CONTINUE
C
            END IF
C
C           Quick return if N = 1.
C
            IF ( N.EQ.1 ) THEN
               DWORK(1) = ONE
               RETURN
            END IF
C
            CALL DLACPY( 'All', NL*K, K, T(K+1,1), LDT, DWORK(2), LENR )
            CALL DLASET( 'All', K, K, ZERO, ZERO, DWORK(NL*K+2), LENR )
         END IF
         PRE  = 1
         STPS = S - 1
      ELSE
         PRE  = P
         STPS = S
         POSR = 1
      END IF
C
      PDW  = LENR*K + 1
      HEAD = MOD( ( PRE - 1 )*K, LENR )
C
C     Determine block size for the involved block Householder
C     transformations.
C
      IF ( ISROW ) THEN
         NB = MIN( ILAENV( 1, 'DGEQRF', ' ', K, LENR, -1, -1 ), K )
      ELSE
         NB = MIN( ILAENV( 1, 'DGELQF', ' ', LENR, K, -1, -1 ), K )
      END IF
      KK = PDW + 4*K
      WRKOPT = KK + LENR*NB
      KK = LDWORK - KK
      IF ( KK.LT.LENR*NB )  NB = KK / LENR
      IF ( ISROW ) THEN
         NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', K, LENR, -1, -1 ) )
      ELSE
         NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', LENR, K, -1, -1 ) )
      END IF
      IF ( NB.LT.NBMIN )  NB = 0
C
C     Generator reduction process.
C
      IF ( ISROW ) THEN
C
         DO 90  I = PRE, PRE + STPS - 1
            CALL MB02CU( 'Row', K, K, K, NB, T, LDT, DUM, 1,
     $                   DWORK(HEAD*K+2), K, RNK, IPVT, DWORK(PDW+1),
     $                   ZERO, DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The positive definiteness is (numerically)
C                             not satisfied.
C
               INFO = 1
               RETURN
            END IF
C
            LEN  = MAX( MIN( ( N - I )*K - K, LENR - HEAD - K ), 0 )
            LEN2 = MAX( MIN( ( N - I )*K - LEN - K, HEAD ), 0 )
            IF ( LEN.EQ.( LENR-K ) ) THEN
               STRUCT = TRIU
            ELSE
               STRUCT = 'N'
            END IF
            CALL MB02CV( 'Row', STRUCT, K, LEN, K, K, NB, -1, DUM, 1,
     $                   DUM, 1, DWORK(HEAD*K+2), K, T(1,K+1), LDT,
     $                   DUM, 1, DWORK((HEAD+K)*K+2), K, DWORK(PDW+1),
     $                   DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            IF ( ( N - I )*K.GE.LENR ) THEN
               STRUCT = TRIU
            ELSE
               STRUCT = 'N'
            END IF
            CALL MB02CV( 'Row', STRUCT, K, LEN2, K, K, NB, -1, DUM, 1,
     $                   DUM, 1, DWORK(HEAD*K+2), K, T(1,K+LEN+1), LDT,
     $                   DUM, 1, DWORK(2), K, DWORK(PDW+1),
     $                   DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            CALL DLASET( 'All', K, K, ZERO, ZERO, DWORK(HEAD*K+2), K )
C
C           Copy current block row to RB.
C
            IF ( LTRI ) THEN
C
               DO 60  J = 1, MIN( LEN + LEN2 + K, LENR - K )
                  CALL DCOPY(  MIN( J, K ), T(1,J), 1,
     $                         RB(MAX( SIZR-J+1, 1 ),POSR+J-1 ), 1 )
   60          CONTINUE
C
               IF ( LEN+LEN2+K.GE.LENR ) THEN
C
                  DO 70  JJ = K, 1, -1
                     CALL DCOPY(  JJ, T(K-JJ+1,LENR-JJ+1), 1,
     $                            RB(1,POSR+LENR-JJ), 1 )
   70             CONTINUE
C
               END IF
               POSR = POSR + K
C
            ELSE
C
               DO 80  J = 1, LEN + LEN2 + K
                  CALL DCOPY(  MIN( J, K ), T(1,J), 1,
     $                         RB(MAX( SIZR-J+1, 1 ),POSR+J-1), 1 )
                  IF ( J.GT.LENR-K ) THEN
                     CALL DLASET( 'All', SIZR-J, 1, ZERO, ZERO,
     $                            RB(1,POSR+J-1), 1 )
                  END IF
   80          CONTINUE
C
               POSR = POSR + K
            END IF
            HEAD = MOD( HEAD + K, LENR )
   90    CONTINUE
C
      ELSE
C
         DO 120  I = PRE, PRE + STPS - 1
C
            CALL MB02CU( 'Column', K, K, K, NB, T, LDT, DUM, 1,
     $                   DWORK(HEAD+2), LENR, RNK, IPVT, DWORK(PDW+1),
     $                   ZERO, DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            IF ( IERR.NE.0 )  THEN
C
C              Error return:  The positive definiteness is (numerically)
C                             not satisfied.
C
               INFO = 1
               RETURN
            END IF
C
            LEN  = MAX( MIN( ( N - I )*K - K, LENR - HEAD - K ), 0 )
            LEN2 = MAX( MIN( ( N - I )*K - LEN - K, HEAD ), 0 )
            IF ( LEN.EQ.( LENR-K ) ) THEN
               STRUCT = TRIU
            ELSE
               STRUCT = 'N'
            END IF
            CALL MB02CV( 'Column', STRUCT, K, LEN, K, K, NB, -1, DUM,
     $                   1, DUM, 1, DWORK(HEAD+2), LENR, T(K+1,1), LDT,
     $                   DUM, 1, DWORK(HEAD+K+2), LENR, DWORK(PDW+1),
     $                   DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            IF ( ( N - I )*K.GE.LENR ) THEN
               STRUCT = TRIU
            ELSE
               STRUCT = 'N'
            END IF
            CALL MB02CV( 'Column', STRUCT, K, LEN2, K, K, NB, -1, DUM,
     $                   1, DUM, 1, DWORK(HEAD+2), LENR, T(K+LEN+1,1),
     $                   LDT, DUM, 1, DWORK(2), LENR, DWORK(PDW+1),
     $                   DWORK(PDW+4*K+1), LDWORK-PDW-4*K, IERR )
C
            CALL DLASET( 'All', K, K, ZERO, ZERO, DWORK(HEAD+2), LENR )
C
C           Copy current block column to RB.
C
            IF ( LTRI ) THEN
C
               DO 100  J = 1, K
                  CALL DCOPY( MIN( SIZR, (N-I)*K-J+1 ), T(J,J), 1,
     $                        RB(1,POSR), 1 )
                  POSR = POSR + 1
  100          CONTINUE
C
            ELSE
C
               DO 110  J = 1, K
                  CALL DCOPY( MIN( SIZR-J+1, (N-I)*K-J+1 ), T(J,J), 1,
     $                        RB(1,POSR), 1 )
                  IF ( LENR.LT.(N-I)*K ) THEN
                     CALL DLASET( 'All', J-1, 1, ZERO, ZERO,
     $                             RB(MIN( SIZR-J+1, (N-I)*K-J+1 ) + 1,
     $                                POSR), LDRB )
                  END IF
                  POSR = POSR + 1
  110          CONTINUE
C
            END IF
            HEAD = MOD( HEAD + K, LENR )
  120    CONTINUE
C
      END IF
      DWORK(1) = DBLE( WRKOPT )
      RETURN
C
C *** Last line of MB02GD ***
      END