File: MB02ID.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (508 lines) | stat: -rw-r--r-- 19,040 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
      SUBROUTINE MB02ID( JOB, K, L, M, N, RB, RC, TC, LDTC, TR, LDTR, B,
     $                   LDB, C, LDC, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve the overdetermined or underdetermined real linear systems
C     involving an M*K-by-N*L block Toeplitz matrix T that is specified
C     by its first block column and row. It is assumed that T has full
C     rank.
C     The following options are provided:
C
C     1. If JOB = 'O' or JOB = 'A' :  find the least squares solution of
C        an overdetermined system, i.e., solve the least squares problem
C
C                  minimize || B - T*X ||.                           (1)
C
C     2. If JOB = 'U' or JOB = 'A' :  find the minimum norm solution of
C        the undetermined system
C                   T
C                  T * X = C.                                        (2)
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the problem to be solved as follows
C             = 'O':  solve the overdetermined system (1);
C             = 'U':  solve the underdetermined system (2);
C             = 'A':  solve (1) and (2).
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The number of rows in the blocks of T.  K >= 0.
C
C     L       (input) INTEGER
C             The number of columns in the blocks of T.  L >= 0.
C
C     M       (input) INTEGER
C             The number of blocks in the first block column of T.
C             M >= 0.
C
C     N       (input) INTEGER
C             The number of blocks in the first block row of T.
C             0 <= N <= M*K / L.
C
C     RB      (input) INTEGER
C             If JOB = 'O' or 'A', the number of columns in B.  RB >= 0.
C
C     RC      (input) INTEGER
C             If JOB = 'U' or 'A', the number of columns in C.  RC >= 0.
C
C     TC      (input)  DOUBLE PRECISION array, dimension (LDTC,L)
C             On entry, the leading M*K-by-L part of this array must
C             contain the first block column of T.
C
C     LDTC    INTEGER
C             The leading dimension of the array TC.  LDTC >= MAX(1,M*K)
C
C     TR      (input)  DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
C             On entry, the leading K-by-(N-1)*L part of this array must
C             contain the 2nd to the N-th blocks of the first block row
C             of T.
C
C     LDTR    INTEGER
C             The leading dimension of the array TR.  LDTR >= MAX(1,K).
C
C     B       (input/output)  DOUBLE PRECISION array, dimension (LDB,RB)
C             On entry, if JOB = 'O' or JOB = 'A', the leading M*K-by-RB
C             part of this array must contain the right hand side
C             matrix B of the overdetermined system (1).
C             On exit, if JOB = 'O' or JOB = 'A', the leading N*L-by-RB
C             part of this array contains the solution of the
C             overdetermined system (1).
C             This array is not referenced if JOB = 'U'.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,M*K),  if JOB = 'O'  or  JOB = 'A';
C             LDB >= 1,           if JOB = 'U'.
C
C     C       (input)  DOUBLE PRECISION array, dimension (LDC,RC)
C             On entry, if JOB = 'U' or JOB = 'A', the leading N*L-by-RC
C             part of this array must contain the right hand side
C             matrix C of the underdetermined system (2).
C             On exit, if JOB = 'U' or JOB = 'A', the leading M*K-by-RC
C             part of this array contains the solution of the
C             underdetermined system (2).
C             This array is not referenced if JOB = 'O'.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDB >= 1,           if JOB = 'O';
C             LDB >= MAX(1,M*K),  if JOB = 'U'  or  JOB = 'A'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -17,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             Let x = MAX( 2*N*L*(L+K) + (6+N)*L,(N*L+M*K+1)*L + M*K )
C             and y = N*M*K*L + N*L, then
C             if MIN( M,N ) = 1 and JOB = 'O',
C                         LDWORK >= MAX( y + MAX( M*K,RB ),1 );
C             if MIN( M,N ) = 1 and JOB = 'U',
C                         LDWORK >= MAX( y + MAX( M*K,RC ),1 );
C             if MIN( M,N ) = 1 and JOB = 'A',
C                         LDWORK >= MAX( y +MAX( M*K,MAX( RB,RC ),1 );
C             if MIN( M,N ) > 1 and JOB = 'O',
C                         LDWORK >= MAX( x,N*L*RB + 1 );
C             if MIN( M,N ) > 1 and JOB = 'U',
C                         LDWORK >= MAX( x,N*L*RC + 1 );
C             if MIN( M,N ) > 1 and JOB = 'A',
C                         LDWORK >= MAX( x,N*L*MAX( RB,RC ) + 1 ).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed. The Toeplitz matrix
C                   associated with T is (numerically) not of full rank.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O( L*L*K*(N+M)*log(N+M) + N*N*L*L*(L+K) )
C     and additionally
C
C     if JOB = 'O' or JOB = 'A',
C                  O( (K*L+RB*L+K*RB)*(N+M)*log(N+M) + N*N*L*L*RB );
C     if JOB = 'U' or JOB = 'A',
C                  O( (K*L+RC*L+K*RC)*(N+M)*log(N+M) + N*N*L*L*RC );
C
C     floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C     D. Kressner, Technical Univ. Berlin, Germany, July 2002.
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOB
      INTEGER           INFO, K, L, LDB, LDC, LDTC, LDTR, LDWORK, M, N,
     $                  RB, RC
C     .. Array Arguments ..
      DOUBLE PRECISION  B(LDB,*), C(LDC,*), DWORK(LDWORK), TC(LDTC,*),
     $                  TR(LDTR,*)
C     .. Local Scalars ..
      INTEGER           I, IERR, KK, LEN, NB, NBMIN, PDI, PDW, PNI, PNR,
     $                  PPI, PPR, PT, RNK, WRKMIN, WRKOPT, X, Y
      LOGICAL           COMPO, COMPU
C     .. Local Arrays ..
      INTEGER           IPVT(1)
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      EXTERNAL          ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          DGELS, DGEMM, DGEQRF, DLACPY, DLASET, DORGQR,
     $                  DTRMM, DTRSM, DTRTRI, MA02AD, MB02CU, MB02CV,
     $                  MB02KD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      COMPO = LSAME( JOB, 'O' ) .OR. LSAME( JOB, 'A' )
      COMPU = LSAME( JOB, 'U' ) .OR. LSAME( JOB, 'A' )
      X = MAX( 2*N*L*( L + K ) + ( 6 + N )*L,
     $         ( N*L + M*K + 1 )*L + M*K )
      Y = N*M*K*L + N*L
      IF ( MIN( M, N ).EQ.1 ) THEN
         WRKMIN = MAX( M*K, 1 )
         IF ( COMPO )  WRKMIN = MAX( WRKMIN, RB )
         IF ( COMPU )  WRKMIN = MAX( WRKMIN, RC )
         WRKMIN = MAX( Y + WRKMIN, 1 )
      ELSE
         WRKMIN = X
         IF ( COMPO )  WRKMIN = MAX( WRKMIN, N*L*RB + 1 )
         IF ( COMPU )  WRKMIN = MAX( WRKMIN, N*L*RC + 1 )
      END IF
      WRKOPT = 1
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( COMPO .OR. COMPU ) ) THEN
         INFO = -1
      ELSE IF ( K.LT.0 ) THEN
         INFO = -2
      ELSE IF ( L.LT.0 ) THEN
         INFO = -3
      ELSE IF ( M.LT.0 ) THEN
         INFO = -4
      ELSE IF ( N.LT.0 .OR. ( N*L ).GT.( M*K ) ) THEN
         INFO = -5
      ELSE IF ( COMPO .AND. RB.LT.0 ) THEN
         INFO = -6
      ELSE IF ( COMPU .AND. RC.LT.0  ) THEN
         INFO = -7
      ELSE IF ( LDTC.LT.MAX( 1, M*K ) ) THEN
         INFO = -9
      ELSE IF ( LDTR.LT.MAX( 1, K ) ) THEN
         INFO = -11
      ELSE IF ( LDB.LT.1 .OR. ( COMPO .AND. LDB.LT.M*K ) ) THEN
         INFO = -13
      ELSE IF ( LDC.LT.1 .OR. ( COMPU .AND. LDC.LT.M*K ) ) THEN
         INFO = -15
      ELSE IF ( LDWORK.LT.WRKMIN ) THEN
         DWORK(1) = DBLE( WRKMIN )
         INFO = -17
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02ID', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( COMPO .AND. MIN( N*L, RB ).EQ.0 ) THEN
         COMPO = .FALSE.
      END IF
      IF( COMPU .AND. MIN( N*L, RC ).EQ.0 ) THEN
         CALL DLASET( 'Full', M*K, RC, ZERO, ZERO, C, LDC )
         COMPU = .FALSE.
      END IF
      IF ( .NOT.( COMPO .OR. COMPU ) ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Check cases M = 1 or N = 1.
C
      IF ( MIN( M, N ).EQ.1 ) THEN
         PDW = K*L*M*N
         IF ( COMPO ) THEN
            CALL DLACPY( 'All', M*K, L, TC, LDTC, DWORK, M*K )
            CALL DLACPY( 'All', K, (N-1)*L, TR, LDTR, DWORK(K*L+1),
     $                   M*K )
            CALL DGELS( 'NonTranspose', M*K, N*L, RB, DWORK, M*K, B,
     $                  LDB, DWORK(PDW+1), LDWORK-PDW, IERR )
            WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+1) ) + PDW )
         END IF
         IF ( COMPU ) THEN
            CALL DLACPY( 'All', M*K, L, TC, LDTC, DWORK, M*K )
            CALL DLACPY( 'All', K, (N-1)*L, TR, LDTR, DWORK(K*L+1),
     $                   M*K )
            CALL DGELS( 'Transpose', M*K, N*L, RC, DWORK, M*K, C, LDC,
     $                  DWORK(PDW+1), LDWORK-PDW, IERR )
            WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+1) ) + PDW )
         END IF
         DWORK(1) = DBLE( WRKOPT )
         RETURN
      END IF
C
C     Step 1:  Compute the generator.
C
      IF ( COMPO ) THEN
         CALL MB02KD( 'Column', 'Transpose', K, L, M, N, RB, ONE, ZERO,
     $                TC, LDTC, TR, LDTR, B, LDB, DWORK, N*L,
     $                DWORK(N*L*RB+1), LDWORK-N*L*RB, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(N*L*RB+1) ) + N*L*RB )
         CALL DLACPY( 'All', N*L, RB, DWORK, N*L, B, LDB )
      END IF
C
      PDW = N*L*L + 1
      CALL DLACPY( 'All', M*K, L, TC, LDTC, DWORK(PDW), M*K )
      CALL DGEQRF( M*K, L, DWORK(PDW), M*K, DWORK(PDW+M*K*L),
     $             DWORK(PDW+(M*K+1)*L), LDWORK-PDW-(M*K+1)*L-1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+(M*K+1)*L) ) +
     $                      PDW + (M*K+1)*L - 1 )
C
      DO 10  I = PDW, PDW + M*K*L - 1, M*K + 1
         IF ( DWORK(I).EQ.ZERO ) THEN
            INFO = 1
            RETURN
         END IF
   10 CONTINUE
C
      CALL MA02AD( 'Upper', L, L, DWORK(PDW), M*K, DWORK, N*L )
      CALL DORGQR( M*K, L, L, DWORK(PDW), M*K, DWORK(PDW+M*K*L),
     $             DWORK(PDW+(M*K+1)*L), LDWORK-PDW-(M*K+1)*L-1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+(M*K+1)*L) ) +
     $                      PDW + (M*K+1)*L - 1 )
      CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, L, ONE, ZERO,
     $              TC, LDTC, TR, LDTR, DWORK(PDW), M*K, DWORK(L+1),
     C              N*L, DWORK(PDW+M*K*L), LDWORK-PDW-M*K*L+1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+M*K*L) ) + PDW + M*K*L - 1 )
      PPR = N*L*L + 1
      PNR = N*L*( L + K ) + 1
      CALL MA02AD( 'All', K, (N-1)*L, TR, LDTR, DWORK(PPR+L), N*L )
      CALL DLACPY( 'All', (N-1)*L, L, DWORK(L+1), N*L, DWORK(PNR+L),
     $             N*L )
      PT  = ( M - 1 )*K + 1
      PDW = PNR + N*L*L + L
C
      DO 30  I = 1, MIN( M, N-1 )
         CALL MA02AD( 'All', K, L, TC(PT,1), LDTC, DWORK(PDW), N*L )
         PT  = PT  - K
         PDW = PDW + L
   30 CONTINUE
C
      PT = 1
C
      DO 40  I = M + 1, N - 1
         CALL MA02AD( 'All', K, L, TR(1,PT), LDTR, DWORK(PDW), N*L )
         PT  = PT  + L
         PDW = PDW + L
   40 CONTINUE
C
      IF ( COMPO ) THEN
C
C        Apply the first reduction step to T'*B.
C
         CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit',
     $               L, RB, ONE, DWORK, N*L, B, LDB )
         CALL DGEMM( 'NoTranspose', 'NoTranspose', (N-1)*L, RB, L, ONE,
     $               DWORK(L+1), N*L, B, LDB, -ONE, B(L+1,1), LDB )
         CALL DTRSM( 'Left', 'Lower', 'Transpose', 'NonUnit', L,
     $               RB, ONE, DWORK, N*L, B, LDB )
      END IF
C
      IF ( COMPU ) THEN
C
C        Apply the first reduction step to C.
C
         CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit',
     $               L, RC, ONE, DWORK, N*L, C, LDC )
         CALL DGEMM( 'NoTranspose', 'NoTranspose', (N-1)*L, RC, L, ONE,
     $               DWORK(L+1), N*L, C, LDC, -ONE, C(L+1,1), LDC )
         CALL DTRSM( 'Left', 'Lower', 'Transpose', 'NonUnit', L,
     $               RC, ONE, DWORK, N*L, C, LDC )
      END IF
C
      PDI = ( N - 1 )*L + 1
      CALL DLACPY( 'Lower', L, L, DWORK, N*L, DWORK(PDI), N*L )
      CALL DTRTRI( 'Lower', 'NonUnit', L, DWORK(PDI), N*L, IERR )
      CALL MA02AD( 'Lower', L-1, L, DWORK(PDI+1), N*L,
     $             DWORK((2*N-1)*L+1), N*L )
      CALL DLASET( 'Lower', L-1, L, ZERO, ZERO, DWORK(PDI+1), N*L )
      CALL DLACPY( 'Upper', L, L, DWORK(PDI), N*L, DWORK(PNR), N*L )
      CALL DLASET( 'Lower', L-1, L, ZERO, ZERO, DWORK(PNR+1), N*L )
      CALL DLASET( 'All', L, K, ZERO, ZERO, DWORK(PPR), N*L )
      CALL DLASET( 'All', L, K, ZERO, ZERO, DWORK(PNR+N*L*L), N*L )
C
      PPI = PPR
      PPR = PPR + L
      PNI = PNR
      PNR = PNR + L
      PDW = 2*N*L*( L + K ) + 1
      LEN = ( N - 1 )*L
C
C     Determine block size for the involved block Householder
C     transformations.
C
      NB = MIN( ILAENV( 1, 'DGELQF', ' ', N*L, L, -1, -1 ), L )
      KK = PDW + 6*L - 1
      WRKOPT = MAX( WRKOPT, KK + N*L*NB )
      KK = LDWORK - KK
      IF ( KK.LT.N*L*NB )  NB = KK / ( N*L )
      NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', N*L, L, -1, -1 ) )
      IF ( NB.LT.NBMIN )  NB = 0
C
      DO 50  I = L + 1, N*L, L
         CALL MB02CU( 'Column', L, L+K, L+K, NB, DWORK, N*L, DWORK(PPR),
     $                N*L, DWORK(PNR), N*L, RNK, IPVT, DWORK(PDW), ZERO,
     $                DWORK(PDW+6*L), LDWORK-PDW-6*L+1, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The rank condition is (numerically) not
C                          satisfied.
C
            INFO = 1
            RETURN
         END IF
         CALL MB02CV( 'Column', 'NoStructure', L, LEN-L, L+K, L+K, NB,
     $                -1, DWORK, N*L, DWORK(PPR), N*L, DWORK(PNR), N*L,
     $                DWORK(L+1), N*L, DWORK(PPR+L), N*L, DWORK(PNR+L),
     $                N*L, DWORK(PDW), DWORK(PDW+6*L), LDWORK-PDW-6*L+1,
     $                IERR )
         PDI = PDI - L
         IF ( COMPO ) THEN
C
C           Block Gaussian elimination to B.
C
            CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit',
     $                  L, RB, -ONE, DWORK, N*L, B(I,1), LDB )
            IF ( LEN.GT.L ) THEN
               CALL DGEMM( 'NonTranspose', 'NonTranspose', LEN-L, RB, L,
     $                     ONE, DWORK(L+1), N*L, B(I,1), LDB, ONE,
     $                     B(I+L,1), LDB )
            END IF
         END IF
         IF ( COMPU ) THEN
C
C           Block Gaussian elimination to C.
C
            CALL DTRSM( 'Left', 'Lower', 'NonTranspose', 'NonUnit',
     $                  L, RC, -ONE, DWORK, N*L, C(I,1), LDC )
            IF ( LEN.GT.L ) THEN
               CALL DGEMM( 'NonTranspose', 'NonTranspose', LEN-L, RC, L,
     $                     ONE, DWORK(L+1), N*L, C(I,1), LDC, ONE,
     $                     C(I+L,1), LDC )
            END IF
         END IF
         CALL DLASET( 'All', L, L, ZERO, ZERO, DWORK(PDI), N*L )
         CALL MB02CV( 'Column', 'Triangular', L, I+L-1, L+K, L+K, NB,
     $                -1, DWORK, N*L, DWORK(PPR), N*L, DWORK(PNR), N*L,
     $                DWORK(PDI), N*L, DWORK(PPI), N*L, DWORK(PNI), N*L,
     $                DWORK(PDW), DWORK(PDW+6*L), LDWORK-PDW-6*L+1,
     $                IERR )
         IF ( COMPO ) THEN
C
C           Apply block Gaussian elimination to B.
C
            CALL DGEMM( 'NoTranspose', 'NoTranspose', I-1, RB, L, ONE,
     $                  DWORK(PDI), N*L, B(I,1), LDB, ONE, B, LDB )
            CALL DTRMM( 'Left', 'Upper', 'NonTranspose', 'NonUnit', L,
     $                  RB, ONE, DWORK((N-1)*L+1), N*L, B(I,1), LDB )
         END IF
         IF ( COMPU ) THEN
C
C           Apply block Gaussian elimination to C.
C
            CALL DGEMM( 'NonTranspose', 'NonTranspose', I-1, RC, L, ONE,
     $                  DWORK(PDI), N*L, C(I,1), LDC, ONE, C, LDC )
            CALL DTRMM( 'Left', 'Upper', 'NonTranspose', 'NonUnit', L,
     $                  RC, ONE, DWORK((N-1)*L+1), N*L, C(I,1), LDC )
         END IF
         LEN = LEN - L
         PNR = PNR + L
         PPR = PPR + L
   50 CONTINUE
C
      IF ( COMPU ) THEN
         CALL MB02KD( 'Column', 'NonTranspose', K, L, M, N, RC, ONE,
     $                ZERO, TC, LDTC, TR, LDTR, C, LDC, DWORK, M*K,
     $                DWORK(M*K*RC+1), LDWORK-M*K*RC, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(M*K*RC+1) ) + M*K*RC )
         CALL DLACPY( 'All', M*K, RC, DWORK, M*K, C, LDC )
      END IF
      DWORK(1) = DBLE( WRKOPT )
      RETURN
C
C *** Last line of MB02ID ***
      END