1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
SUBROUTINE MB02JD( JOB, K, L, M, N, P, S, TC, LDTC, TR, LDTR, Q,
$ LDQ, R, LDR, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a lower triangular matrix R and a matrix Q with
C Q^T Q = I such that
C T
C T = Q R ,
C
C where T is a K*M-by-L*N block Toeplitz matrix with blocks of size
C (K,L). The first column of T will be denoted by TC and the first
C row by TR. It is assumed that the first MIN(M*K, N*L) columns of T
C have full rank.
C
C By subsequent calls of this routine the factors Q and R can be
C computed block column by block column.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the output of the routine as follows:
C = 'Q': computes Q and R;
C = 'R': only computes R.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows in one block of T. K >= 0.
C
C L (input) INTEGER
C The number of columns in one block of T. L >= 0.
C
C M (input) INTEGER
C The number of blocks in one block column of T. M >= 0.
C
C N (input) INTEGER
C The number of blocks in one block row of T. N >= 0.
C
C P (input) INTEGER
C The number of previously computed block columns of R.
C P*L < MIN( M*K,N*L ) + L and P >= 0.
C
C S (input) INTEGER
C The number of block columns of R to compute.
C (P+S)*L < MIN( M*K,N*L ) + L and S >= 0.
C
C TC (input) DOUBLE PRECISION array, dimension (LDTC, L)
C On entry, if P = 0, the leading M*K-by-L part of this
C array must contain the first block column of T.
C
C LDTC INTEGER
C The leading dimension of the array TC.
C LDTC >= MAX(1,M*K).
C
C TR (input) DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
C On entry, if P = 0, the leading K-by-(N-1)*L part of this
C array must contain the first block row of T without the
C leading K-by-L block.
C
C LDTR INTEGER
C The leading dimension of the array TR.
C LDTR >= MAX(1,K).
C
C Q (input/output) DOUBLE PRECISION array, dimension
C (LDQ,MIN( S*L, MIN( M*K,N*L )-P*L ))
C On entry, if JOB = 'Q' and P > 0, the leading M*K-by-L
C part of this array must contain the last block column of Q
C from a previous call of this routine.
C On exit, if JOB = 'Q' and INFO = 0, the leading
C M*K-by-MIN( S*L, MIN( M*K,N*L )-P*L ) part of this array
C contains the P-th to (P+S)-th block columns of the factor
C Q.
C
C LDQ INTEGER
C The leading dimension of the array Q.
C LDQ >= MAX(1,M*K), if JOB = 'Q';
C LDQ >= 1, if JOB = 'R'.
C
C R (input/output) DOUBLE PRECISION array, dimension
C (LDR,MIN( S*L, MIN( M*K,N*L )-P*L ))
C On entry, if P > 0, the leading (N-P+1)*L-by-L
C part of this array must contain the nozero part of the
C last block column of R from a previous call of this
C routine.
C One exit, if INFO = 0, the leading
C MIN( N, N-P+1 )*L-by-MIN( S*L, MIN( M*K,N*L )-P*L )
C part of this array contains the nonzero parts of the P-th
C to (P+S)-th block columns of the lower triangular
C factor R.
C Note that elements in the strictly upper triangular part
C will not be referenced.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX( 1, MIN( N, N-P+1 )*L )
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C On exit, if INFO = -17, DWORK(1) returns the minimum
C value of LDWORK.
C If JOB = 'Q', the first 1 + ( (N-1)*L + M*K )*( 2*K + L )
C elements of DWORK should be preserved during successive
C calls of the routine.
C If JOB = 'R', the first 1 + (N-1)*L*( 2*K + L ) elements
C of DWORK should be preserved during successive calls of
C the routine.
C
C LDWORK INTEGER
C The length of the array DWORK.
C JOB = 'Q':
C LDWORK >= 1 + ( M*K + ( N - 1 )*L )*( L + 2*K ) + 6*L
C + MAX( M*K,( N - MAX( 1,P )*L ) );
C JOB = 'R':
C If P = 0,
C LDWORK >= MAX( 1 + ( N - 1 )*L*( L + 2*K ) + 6*L
C + (N-1)*L, M*K*( L + 1 ) + L );
C If P > 0,
C LDWORK >= 1 + (N-1)*L*( L + 2*K ) + 6*L + (N-P)*L.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the full rank condition for the first MIN(M*K, N*L)
C columns of T is (numerically) violated.
C
C METHOD
C
C Block Householder transformations and modified hyperbolic
C rotations are used in the Schur algorithm [1], [2].
C
C REFERENCES
C
C [1] Kailath, T. and Sayed, A.
C Fast Reliable Algorithms for Matrices with Structure.
C SIAM Publications, Philadelphia, 1999.
C
C [2] Kressner, D. and Van Dooren, P.
C Factorizations and linear system solvers for matrices with
C Toeplitz structure.
C SLICOT Working Note 2000-2, 2000.
C
C NUMERICAL ASPECTS
C
C The implemented method yields a factor R which has comparable
C accuracy with the Cholesky factor of T^T * T. Q is implicitly
C computed from the formula Q = T * inv(R^T R) * R, i.e., for ill
C conditioned problems this factor is of very limited value.
C 2
C The algorithm requires 0(K*L *M*N) floating point operations.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C D. Kressner, Technical Univ. Berlin, Germany, July 2002.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, K, L, LDQ, LDR, LDTC, LDTR, LDWORK,
$ M, N, P, S
C .. Array Arguments ..
DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,*), R(LDR,*), TC(LDTC,*),
$ TR(LDTR,*)
C .. Local Scalars ..
INTEGER COLR, I, IERR, KK, LEN, NB, NBMIN, PDQ, PDW,
$ PNQ, PNR, PRE, PT, RNK, SHFR, STPS, WRKMIN,
$ WRKOPT
LOGICAL COMPQ
C .. Local Arrays ..
INTEGER IPVT(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL DGEQRF, DLACPY, DLASET, DORGQR, MA02AD, MB02CU,
$ MB02CV, MB02KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
COMPQ = LSAME( JOB, 'Q' )
IF ( COMPQ ) THEN
WRKMIN = 1 + ( M*K + ( N - 1 )*L )*( L + 2*K ) + 6*L
$ + MAX( M*K, ( N - MAX( 1, P ) )*L )
ELSE
WRKMIN = 1 + ( N - 1 )*L*( L + 2*K ) + 6*L
$ + ( N - MAX( P, 1 ) )*L
IF ( P.EQ.0 ) THEN
WRKMIN = MAX( WRKMIN, M*K*( L + 1 ) + L )
END IF
END IF
C
C Check the scalar input parameters.
C
IF ( .NOT.( COMPQ .OR. LSAME( JOB, 'R' ) ) ) THEN
INFO = -1
ELSE IF ( K.LT.0 ) THEN
INFO = -2
ELSE IF ( L.LT.0 ) THEN
INFO = -3
ELSE IF ( M.LT.0 ) THEN
INFO = -4
ELSE IF ( N.LT.0 ) THEN
INFO = -5
ELSE IF ( P*L.GE.MIN( M*K, N*L ) + L .OR. P.LT.0 ) THEN
INFO = -6
ELSE IF ( ( P + S )*L.GE.MIN( M*K, N*L ) + L .OR. S.LT.0 ) THEN
INFO = -7
ELSE IF ( LDTC.LT.MAX( 1, M*K ) ) THEN
INFO = -9
ELSE IF ( LDTR.LT.MAX( 1, K ) ) THEN
INFO = -11
ELSE IF ( LDQ.LT.1 .OR. ( COMPQ .AND. LDQ.LT.M*K ) ) THEN
INFO = -13
ELSE IF ( LDR.LT.MAX( 1, MIN( N, N - P + 1 )*L ) ) THEN
INFO = -15
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
DWORK(1) = DBLE( WRKMIN )
INFO = -17
END IF
C
C Return if there were illegal values.
C
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'MB02JD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( M, N, K*L, S ) .EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Catch M*K <= L.
C
WRKOPT = 1
IF ( M*K.LE.L ) THEN
CALL DLACPY( 'All', M*K, L, TC, LDTC, DWORK, M*K )
PDW = M*K*L + 1
CALL DGEQRF( M*K, L, DWORK, M*K, DWORK(PDW),
$ DWORK(PDW+M*K), LDWORK-PDW-M*K+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+M*K) ) + PDW + M*K - 1 )
CALL MA02AD( 'Upper part', M*K, L, DWORK, M*K, R, LDR )
CALL DORGQR( M*K, M*K, M*K, DWORK, M*K, DWORK(PDW),
$ DWORK(PDW+M*K), LDWORK-PDW-M*K+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+M*K) ) + PDW + M*K - 1 )
IF ( COMPQ ) THEN
CALL DLACPY( 'All', M*K, M*K, DWORK, M*K, Q, LDQ )
END IF
PDW = M*K*M*K + 1
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, M*K, ONE,
$ ZERO, TC, LDTC, TR, LDTR, DWORK, M*K, R(L+1,1),
$ LDR, DWORK(PDW), LDWORK-PDW+1, IERR )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
DWORK(1) = DBLE( WRKOPT )
RETURN
END IF
C
C Compute the generator if P = 0.
C
IF ( P.EQ.0 ) THEN
C
C 1st column of the generator.
C
IF ( COMPQ ) THEN
CALL DLACPY( 'All', M*K, L, TC, LDTC, Q, LDQ )
CALL DGEQRF( M*K, L, Q, LDQ, DWORK, DWORK(L+1),
$ LDWORK-L, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(L+1) ) + L )
CALL MA02AD( 'Upper part', L, L, Q, LDQ, R, LDR )
CALL DORGQR( M*K, L, L, Q, LDQ, DWORK, DWORK(L+1), LDWORK-L,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(L+1) ) + L )
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, L, ONE,
$ ZERO, TC, LDTC, TR, LDTR, Q, LDQ, R(L+1,1),
$ LDR, DWORK, LDWORK, IERR )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
ELSE
PDW = M*K*L + 1
CALL DLACPY( 'All', M*K, L, TC, LDTC, DWORK, M*K )
CALL DGEQRF( M*K, L, DWORK, M*K, DWORK(PDW), DWORK(PDW+L),
$ LDWORK-PDW-L+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+L) ) + PDW + L - 1 )
CALL MA02AD( 'Upper part', L, L, DWORK, M*K, R, LDR )
CALL DORGQR( M*K, L, L, DWORK, M*K, DWORK(PDW),
$ DWORK(PDW+L), LDWORK-PDW-L+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+L) ) + PDW + L - 1 )
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, L, ONE,
$ ZERO, TC, LDTC, TR, LDTR, DWORK, M*K,
$ R(L+1,1), LDR, DWORK(PDW), LDWORK-PDW+1,
$ IERR )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
END IF
C
C Quick return if N = 1.
C
IF ( N.EQ.1 ) THEN
DWORK(1) = DBLE( WRKOPT )
RETURN
END IF
C
C 2nd column of the generator.
C
PNR = ( N - 1 )*L*K + 2
CALL MA02AD( 'All', K, (N-1)*L, TR, LDTR, DWORK(2), (N-1)*L )
C
C 3rd and 4th column of the generator.
C
CALL DLACPY( 'All', (N-1)*L, L, R(L+1,1), LDR, DWORK(PNR),
$ (N-1)*L )
PT = ( M - 1 )*K + 1
PDW = PNR + ( N - 1 )*L*L
C
DO 10 I = 1, MIN( M, N-1 )
CALL MA02AD( 'All', K, L, TC(PT,1), LDTC, DWORK(PDW),
$ (N-1)*L )
PT = PT - K
PDW = PDW + L
10 CONTINUE
C
PT = 1
C
DO 20 I = M + 1, N - 1
CALL MA02AD( 'All', K, L, TR(1,PT), LDTR, DWORK(PDW),
$ (N-1)*L )
PT = PT + L
PDW = PDW + L
20 CONTINUE
C
IF ( COMPQ ) THEN
PDQ = ( 2*K + L )*( N - 1 )*L + 2
PDW = ( 2*K + L )*( ( N - 1 )*L + M*K ) + 2
PNQ = PDQ + M*K*K
CALL DLASET( 'All', K, K, ZERO, ONE, DWORK(PDQ), M*K )
CALL DLASET( 'All', (M-1)*K, K, ZERO, ZERO, DWORK(PDQ+K),
$ M*K )
CALL DLACPY( 'All', M*K, L, Q, LDQ, DWORK(PNQ), M*K )
CALL DLASET( 'All', M*K, K, ZERO, ZERO, DWORK(PNQ+M*L*K),
$ M*K )
ELSE
PDW = ( 2*K + L )*( N - 1 )*L + 2
END IF
PRE = 1
STPS = S - 1
ELSE
C
C Set workspace pointers.
C
PNR = ( N - 1 )*L*K + 2
IF ( COMPQ ) THEN
PDQ = ( 2*K + L )*( N - 1 )*L + 2
PDW = ( 2*K + L )*( ( N - 1 )*L + M*K ) + 2
PNQ = PDQ + M*K*K
ELSE
PDW = ( 2*K + L )*( N - 1 )*L + 2
END IF
PRE = P
STPS = S
END IF
C
C Determine suitable size for the block Housholder reflectors.
C
IF ( COMPQ ) THEN
LEN = MAX( L + M*K, ( N - PRE + 1 )*L )
ELSE
LEN = ( N - PRE + 1 )*L
END IF
NB = MIN( ILAENV( 1, 'DGELQF', ' ', LEN, L, -1, -1 ), L )
KK = PDW + 6*L - 1
WRKOPT = MAX( WRKOPT, KK + LEN*NB )
KK = LDWORK - KK
IF ( KK.LT.LEN*NB ) NB = KK / LEN
NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', LEN, L, -1, -1 ) )
IF ( NB.LT.NBMIN ) NB = 0
COLR = L + 1
C
C Generator reduction process.
C
LEN = ( N - PRE )*L
SHFR = ( PRE - 1 )*L
DO 30 I = PRE, PRE + STPS - 1
C
C IF M*K < N*L the last block might have less than L columns.
C
KK = MIN( L, M*K - I*L )
CALL DLACPY( 'Lower', LEN, KK, R(COLR-L,COLR-L), LDR,
$ R(COLR,COLR), LDR )
CALL MB02CU( 'Column', KK, KK+K, L+K, NB, R(COLR,COLR), LDR,
$ DWORK(SHFR+2), (N-1)*L, DWORK(PNR+SHFR), (N-1)*L,
$ RNK, IPVT, DWORK(PDW), ZERO, DWORK(PDW+6*L),
$ LDWORK-PDW-6*L+1, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The rank condition is (numerically) not
C satisfied.
C
INFO = 1
RETURN
END IF
IF ( LEN.GT.KK ) THEN
CALL MB02CV( 'Column', 'NoStructure', KK, LEN-KK, KK+K, L+K,
$ NB, -1, R(COLR,COLR), LDR, DWORK(SHFR+2),
$ (N-1)*L, DWORK(PNR+SHFR), (N-1)*L,
$ R(COLR+KK,COLR), LDR, DWORK(SHFR+KK+2),
$ (N-1)*L, DWORK(PNR+SHFR+KK), (N-1)*L,
$ DWORK(PDW), DWORK(PDW+6*L), LDWORK-PDW-6*L+1,
$ IERR )
END IF
IF ( COMPQ ) THEN
CALL DLASET( 'All', K, KK, ZERO, ZERO, Q(1,COLR), LDQ )
IF ( M.GT.1 ) THEN
CALL DLACPY( 'All', (M-1)*K, KK, Q(1,COLR-L), LDQ,
$ Q(K+1,COLR), LDQ )
END IF
CALL MB02CV( 'Column', 'NoStructure', KK, M*K, KK+K, L+K,
$ NB, -1, R(COLR,COLR), LDR, DWORK(SHFR+2),
$ (N-1)*L, DWORK(PNR+SHFR), (N-1)*L, Q(1,COLR),
$ LDQ, DWORK(PDQ), M*K, DWORK(PNQ), M*K,
$ DWORK(PDW), DWORK(PDW+6*L), LDWORK-PDW-6*L+1,
$ IERR )
END IF
LEN = LEN - L
COLR = COLR + L
SHFR = SHFR + L
30 CONTINUE
C
DWORK(1) = DBLE( WRKOPT )
RETURN
C
C *** Last line of MB02JD ***
END
|