1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
SUBROUTINE MB02JX( JOB, K, L, M, N, TC, LDTC, TR, LDTR, RNK, Q,
$ LDQ, R, LDR, JPVT, TOL1, TOL2, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a low rank QR factorization with column pivoting of a
C K*M-by-L*N block Toeplitz matrix T with blocks of size (K,L);
C specifically,
C T
C T P = Q R ,
C
C where R is lower trapezoidal, P is a block permutation matrix
C and Q^T Q = I. The number of columns in R is equivalent to the
C numerical rank of T with respect to the given tolerance TOL1.
C Note that the pivoting scheme is local, i.e., only columns
C belonging to the same block in T are permuted.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the output of the routine as follows:
C = 'Q': computes Q and R;
C = 'R': only computes R.
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of rows in one block of T. K >= 0.
C
C L (input) INTEGER
C The number of columns in one block of T. L >= 0.
C
C M (input) INTEGER
C The number of blocks in one block column of T. M >= 0.
C
C N (input) INTEGER
C The number of blocks in one block row of T. N >= 0.
C
C TC (input) DOUBLE PRECISION array, dimension (LDTC, L)
C The leading M*K-by-L part of this array must contain
C the first block column of T.
C
C LDTC INTEGER
C The leading dimension of the array TC.
C LDTC >= MAX(1,M*K).
C
C TR (input) DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
C The leading K-by-(N-1)*L part of this array must contain
C the first block row of T without the leading K-by-L
C block.
C
C LDTR INTEGER
C The leading dimension of the array TR. LDTR >= MAX(1,K).
C
C RNK (output) INTEGER
C The number of columns in R, which is equivalent to the
C numerical rank of T.
C
C Q (output) DOUBLE PRECISION array, dimension (LDQ,RNK)
C If JOB = 'Q', then the leading M*K-by-RNK part of this
C array contains the factor Q.
C If JOB = 'R', then this array is not referenced.
C
C LDQ INTEGER
C The leading dimension of the array Q.
C LDQ >= MAX(1,M*K), if JOB = 'Q';
C LDQ >= 1, if JOB = 'R'.
C
C R (output) DOUBLE PRECISION array, dimension (LDR,RNK)
C The leading N*L-by-RNK part of this array contains the
C lower trapezoidal factor R.
C
C LDR INTEGER
C The leading dimension of the array R.
C LDR >= MAX(1,N*L)
C
C JPVT (output) INTEGER array, dimension (MIN(M*K,N*L))
C This array records the column pivoting performed.
C If JPVT(j) = k, then the j-th column of T*P was
C the k-th column of T.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If TOL1 >= 0.0, the user supplied diagonal tolerance;
C if TOL1 < 0.0, a default diagonal tolerance is used.
C
C TOL2 DOUBLE PRECISION
C If TOL2 >= 0.0, the user supplied offdiagonal tolerance;
C if TOL2 < 0.0, a default offdiagonal tolerance is used.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK; DWORK(2) and DWORK(3) return the used values
C for TOL1 and TOL2, respectively.
C On exit, if INFO = -19, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 3, ( M*K + ( N - 1 )*L )*( L + 2*K ) + 9*L
C + MAX(M*K,(N-1)*L) ), if JOB = 'Q';
C LDWORK >= MAX( 3, ( N - 1 )*L*( L + 2*K + 1 ) + 9*L,
C M*K*( L + 1 ) + L ), if JOB = 'R'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: due to perturbations induced by roundoff errors, or
C removal of nearly linearly dependent columns of the
C generator, the Schur algorithm encountered a
C situation where a diagonal element in the negative
C generator is larger in magnitude than the
C corresponding diagonal element in the positive
C generator (modulo TOL1);
C = 2: due to perturbations induced by roundoff errors, or
C removal of nearly linearly dependent columns of the
C generator, the Schur algorithm encountered a
C situation where diagonal elements in the positive
C and negative generator are equal in magnitude
C (modulo TOL1), but the offdiagonal elements suggest
C that these columns are not linearly dependent
C (modulo TOL2*ABS(diagonal element)).
C
C METHOD
C
C Householder transformations and modified hyperbolic rotations
C are used in the Schur algorithm [1], [2].
C If, during the process, the hyperbolic norm of a row in the
C leading part of the generator is found to be less than or equal
C to TOL1, then this row is not reduced. If the difference of the
C corresponding columns has a norm less than or equal to TOL2 times
C the magnitude of the leading element, then this column is removed
C from the generator, as well as from R. Otherwise, the algorithm
C breaks down. TOL1 is set to norm(TC)*sqrt(eps) and TOL2 is set
C to N*L*sqrt(eps) by default.
C If M*K > L, the columns of T are permuted so that the diagonal
C elements in one block column of R have decreasing magnitudes.
C
C REFERENCES
C
C [1] Kailath, T. and Sayed, A.
C Fast Reliable Algorithms for Matrices with Structure.
C SIAM Publications, Philadelphia, 1999.
C
C [2] Kressner, D. and Van Dooren, P.
C Factorizations and linear system solvers for matrices with
C Toeplitz structure.
C SLICOT Working Note 2000-2, 2000.
C
C NUMERICAL ASPECTS
C
C The algorithm requires 0(K*RNK*L*M*N) floating point operations.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C D. Kressner, Technical Univ. Berlin, Germany, July 2002.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, Householder transformation, matrix
C operations, Toeplitz matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, K, L, LDQ, LDR, LDTC, LDTR, LDWORK, M, N,
$ RNK
DOUBLE PRECISION TOL1, TOL2
C .. Array Arguments ..
DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,*), R(LDR,*), TC(LDTC,*),
$ TR(LDTR,*)
INTEGER JPVT(*)
C .. Local Scalars ..
LOGICAL COMPQ, LAST
INTEGER CPCOL, GAP, I, IERR, J, JJ, JWORK, KK, LEN, MK,
$ NZC, PDP, PDQ, PDW, PNQ, PNR, PP, PPR, PT, RDEF,
$ RRDF, RRNK, WRKMIN, WRKOPT
DOUBLE PRECISION LTOL1, LTOL2, NRM, TEMP
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DNRM2
EXTERNAL DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEQP3, DGEQRF, DLACPY, DLASET,
$ DORGQR, DSCAL, DSWAP, DTRMV, MA02AD, MB02CU,
$ MB02CV, MB02KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
WRKOPT = 3
MK = M*K
COMPQ = LSAME( JOB, 'Q' )
IF ( COMPQ ) THEN
WRKMIN = MAX( 3, ( MK + ( N - 1 )*L )*( L + 2*K ) + 9*L +
$ MAX( MK, ( N - 1 )*L ) )
ELSE
WRKMIN = MAX( 3, MAX ( ( N - 1 )*L*( L + 2*K + 1 ) + 9*L,
$ MK*( L + 1 ) + L ) )
END IF
C
C Check the scalar input parameters.
C
IF ( .NOT.( COMPQ .OR. LSAME( JOB, 'R' ) ) ) THEN
INFO = -1
ELSE IF ( K.LT.0 ) THEN
INFO = -2
ELSE IF ( L.LT.0 ) THEN
INFO = -3
ELSE IF ( M.LT.0 ) THEN
INFO = -4
ELSE IF ( N.LT.0 ) THEN
INFO = -5
ELSE IF ( LDTC.LT.MAX( 1, MK ) ) THEN
INFO = -7
ELSE IF ( LDTR.LT.MAX( 1, K ) ) THEN
INFO = -9
ELSE IF ( LDQ.LT.1 .OR. ( COMPQ .AND. LDQ.LT.MK ) ) THEN
INFO = -12
ELSE IF ( LDR.LT.MAX( 1, N*L ) ) THEN
INFO = -14
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
DWORK(1) = DBLE( WRKMIN )
INFO = -19
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02JX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( M, N, K, L ).EQ.0 ) THEN
RNK = 0
DWORK(1) = DBLE( WRKOPT )
DWORK(2) = ZERO
DWORK(3) = ZERO
RETURN
END IF
C
WRKOPT = WRKMIN
C
IF ( MK.LE.L ) THEN
C
C Catch M*K <= L.
C
CALL DLACPY( 'All', MK, L, TC, LDTC, DWORK, MK )
PDW = MK*L + 1
JWORK = PDW + MK
CALL DGEQRF( MK, L, DWORK, MK, DWORK(PDW), DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
CALL MA02AD( 'Upper part', MK, L, DWORK, MK, R, LDR )
CALL DORGQR( MK, MK, MK, DWORK, MK, DWORK(PDW),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( COMPQ )
$ CALL DLACPY( 'All', MK, MK, DWORK, MK, Q, LDQ )
PDW = MK*MK + 1
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, MK, ONE,
$ ZERO, TC, LDTC, TR, LDTR, DWORK, MK, R(L+1,1),
$ LDR, DWORK(PDW), LDWORK-PDW+1, IERR )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
DO 10 I = 1, MK
JPVT(I) = I
10 CONTINUE
C
RNK = MK
DWORK(1) = DBLE( WRKOPT )
DWORK(2) = ZERO
DWORK(3) = ZERO
RETURN
END IF
C
C Compute the generator:
C
C 1st column of the generator.
C
DO 20 I = 1, L
JPVT(I) = 0
20 CONTINUE
C
LTOL1 = TOL1
LTOL2 = TOL2
C
IF ( COMPQ ) THEN
CALL DLACPY( 'All', MK, L, TC, LDTC, Q, LDQ )
CALL DGEQP3( MK, L, Q, LDQ, JPVT, DWORK, DWORK(L+1),
$ LDWORK-L, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(L+1) ) + L )
C
IF ( LTOL1.LT.ZERO ) THEN
C
C Compute default tolerance LTOL1.
C
C Estimate the 2-norm of the first block column of the
C matrix with 5 power iterations.
C
TEMP = ONE / SQRT( DBLE( L ) )
CALL DLASET( 'All', L, 1, TEMP, TEMP, DWORK(L+1), 1 )
C
DO 30 I = 1, 5
CALL DTRMV( 'Upper', 'NonTranspose', 'NonUnit', L, Q,
$ LDQ, DWORK(L+1), 1 )
CALL DTRMV( 'Upper', 'Transpose', 'NonUnit', L, Q, LDQ,
$ DWORK(L+1), 1 )
NRM = DNRM2( L, DWORK(L+1), 1 )
CALL DSCAL( L, ONE/NRM, DWORK(L+1), 1 )
30 CONTINUE
C
LTOL1 = SQRT( NRM*DLAMCH( 'Epsilon' ) )
END IF
C
I = L
C
40 CONTINUE
IF ( ABS( Q(I,I) ).LE.LTOL1 ) THEN
I = I - 1
IF ( I.GT.0 ) GO TO 40
END IF
C
RRNK = I
RRDF = L - RRNK
CALL MA02AD( 'Upper', RRNK, L, Q, LDQ, R, LDR )
IF ( RRNK.GT.1 )
$ CALL DLASET( 'Upper', L-1, RRNK-1, ZERO, ZERO, R(1,2), LDR )
CALL DORGQR( MK, L, RRNK, Q, LDQ, DWORK, DWORK(L+1), LDWORK-L,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(L+1) ) + L )
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, RRNK, ONE,
$ ZERO, TC, LDTC, TR, LDTR, Q, LDQ, R(L+1,1),
$ LDR, DWORK, LDWORK, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
END IF
C
ELSE
C
PDW = MK*L + 1
JWORK = PDW + L
CALL DLACPY( 'All', MK, L, TC, LDTC, DWORK, MK )
CALL DGEQP3( MK, L, DWORK, MK, JPVT, DWORK(PDW),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
IF ( LTOL1.LT.ZERO ) THEN
C
C Compute default tolerance LTOL1.
C
C Estimate the 2-norm of the first block column of the
C matrix with 5 power iterations.
C
TEMP = ONE / SQRT( DBLE( L ) )
CALL DLASET( 'All', L, 1, TEMP, TEMP, DWORK(JWORK), 1 )
C
DO 50 I = 1, 5
CALL DTRMV( 'Upper', 'NonTranspose', 'NonUnit', L, DWORK,
$ MK, DWORK(JWORK), 1 )
CALL DTRMV( 'Upper', 'Transpose', 'NonUnit', L, DWORK,
$ MK, DWORK(JWORK), 1 )
NRM = DNRM2( L, DWORK(JWORK), 1 )
CALL DSCAL( L, ONE/NRM, DWORK(JWORK), 1 )
50 CONTINUE
C
LTOL1 = SQRT( NRM*DLAMCH( 'Epsilon' ) )
END IF
C
RRNK = L
I = ( L - 1 )*MK + L
C
60 CONTINUE
IF ( ABS( DWORK(I) ).LE.LTOL1 ) THEN
RRNK = RRNK - 1
I = I - MK - 1
IF ( I.GT.0 ) GO TO 60
END IF
C
RRDF = L - RRNK
CALL MA02AD( 'Upper part', RRNK, L, DWORK, MK, R, LDR )
IF ( RRNK.GT.1 )
$ CALL DLASET( 'Upper', L-1, RRNK-1, ZERO, ZERO, R(1,2), LDR )
CALL DORGQR( MK, L, RRNK, DWORK, MK, DWORK(PDW),
$ DWORK(JWORK), LDWORK-JWORK+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
IF ( N.GT.1 ) THEN
CALL MB02KD( 'Row', 'Transpose', K, L, M, N-1, RRNK, ONE,
$ ZERO, TC, LDTC, TR, LDTR, DWORK, MK, R(L+1,1),
$ LDR, DWORK(PDW), LDWORK-PDW+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
END IF
END IF
C
C Quick return if N = 1.
C
IF ( N.EQ.1 ) THEN
RNK = RRNK
DWORK(1) = DBLE( WRKOPT )
DWORK(2) = LTOL1
DWORK(3) = ZERO
RETURN
END IF
C
C Compute default tolerance LTOL2.
C
IF ( LTOL2.LT.ZERO )
$ LTOL2 = DBLE( N*L )*SQRT( DLAMCH( 'Epsilon' ) )
C
DO 70 J = 1, L
CALL DCOPY( RRNK, R(J,1), LDR, R(L+JPVT(J),RRNK+1), LDR )
70 CONTINUE
C
IF ( N.GT.2 )
$ CALL DLACPY( 'All', (N-2)*L, RRNK, R(L+1,1), LDR,
$ R(2*L+1,RRNK+1), LDR )
C
C 2nd column of the generator.
C
IF ( RRDF.GT.0 )
$ CALL MA02AD( 'All', MIN( RRDF, K ), (N-1)*L, TR, LDTR,
$ R(L+1,2*RRNK+1), LDR )
IF ( K.GT.RRDF )
$ CALL MA02AD( 'All', K-RRDF, (N-1)*L, TR(RRDF+1,1), LDTR, DWORK,
$ (N-1)*L )
C
C 3rd column of the generator.
C
PNR = ( N - 1 )*L*MAX( 0, K-RRDF ) + 1
CALL DLACPY( 'All', (N-1)*L, RRNK, R(L+1,1), LDR, DWORK(PNR),
$ (N-1)*L )
C
C 4th column of the generator.
C
PDW = PNR + ( N - 1 )*L*RRNK
PT = ( M - 1 )*K + 1
C
DO 80 I = 1, MIN( M, N-1 )
CALL MA02AD( 'All', K, L, TC(PT,1), LDTC, DWORK(PDW), (N-1)*L )
PT = PT - K
PDW = PDW + L
80 CONTINUE
C
PT = 1
C
DO 90 I = M + 1, N - 1
CALL MA02AD( 'All', K, L, TR(1,PT), LDTR, DWORK(PDW), (N-1)*L )
PT = PT + L
PDW = PDW + L
90 CONTINUE
C
IF ( COMPQ ) THEN
PDQ = PNR + ( N - 1 )*L*( RRNK + K )
PNQ = PDQ + MK*MAX( 0, K-RRDF )
PDW = PNQ + MK*( RRNK + K )
CALL DLACPY( 'All', MK, RRNK, Q, LDQ, DWORK(PNQ), MK )
IF ( M.GT.1 )
$ CALL DLACPY( 'All', (M-1)*K, RRNK, Q, LDQ, Q(K+1,RRNK+1),
$ LDQ )
CALL DLASET( 'All', K, RRNK, ZERO, ZERO, Q(1,RRNK+1), LDQ )
IF ( RRDF.GT.0 )
$ CALL DLASET( 'All', MK, RRDF, ZERO, ONE, Q(1,2*RRNK+1),
$ LDQ )
CALL DLASET( 'All', RRDF, MAX( 0, K-RRDF ), ZERO, ZERO,
$ DWORK(PDQ), MK )
CALL DLASET( 'All', M*K-RRDF, MAX( 0, K-RRDF ), ZERO, ONE,
$ DWORK(PDQ+RRDF), MK )
CALL DLASET( 'All', MK, K, ZERO, ZERO, DWORK(PNQ+MK*RRNK), MK )
ELSE
PDW = PNR + ( N - 1 )*L*( RRNK + K )
END IF
PPR = 1
RNK = RRNK
RDEF = RRDF
LEN = N*L
GAP = N*L - MIN( N*L, MK )
C
C KK is the number of columns in the leading part of the
C generator. After sufficiently many rank drops or if
C M*K < N*L it may be less than L.
C
KK = MIN( L+K-RDEF, L )
KK = MIN( KK, MK-L )
C
C Generator reduction process.
C
DO 190 I = L + 1, MIN( MK, N*L ), L
IF ( I+L.LE.MIN( MK, N*L ) ) THEN
LAST = .FALSE.
ELSE
LAST = .TRUE.
END IF
PP = KK + MAX( K - RDEF, 0 )
LEN = LEN - L
CALL MB02CU( 'Deficient', KK, PP, L+K-RDEF, -1, R(I,RNK+1),
$ LDR, DWORK(PPR), (N-1)*L, DWORK(PNR), (N-1)*L,
$ RRNK, JPVT(I), DWORK(PDW), LTOL1, DWORK(PDW+5*L),
$ LDWORK-PDW-5*L+1, IERR )
IF ( IERR.NE.0 ) THEN
C
C Error return: The current generator is indefinite.
C
INFO = 1
RETURN
END IF
C
C Apply pivoting to other columns of R.
C
PDP = PDW + 6*L - I
C
DO 100 J = I, I + KK - 1
JPVT(J) = JPVT(J) + I - 1
DWORK(PDP+JPVT(J)) = DBLE(J)
100 CONTINUE
C
DO 120 J = I, I + KK - 1
TEMP = DBLE(J)
JJ = J-1
C
110 CONTINUE
JJ = JJ + 1
IF ( DWORK(PDP+JJ).NE.TEMP ) GO TO 110
C
IF ( JJ.NE.J ) THEN
DWORK(PDP+JJ) = DWORK(PDP+J)
CALL DSWAP( RNK, R(J,1), LDR, R(JJ,1), LDR )
END IF
120 CONTINUE
C
DO 130 J = I + KK, I + L - 1
JPVT(J) = J
130 CONTINUE
C
C Apply reduction to other rows of R.
C
IF ( LEN.GT.KK ) THEN
CALL MB02CV( 'Deficient', 'NoStructure', KK, LEN-KK, PP,
$ L+K-RDEF, -1, RRNK, R(I,RNK+1), LDR,
$ DWORK(PPR), (N-1)*L, DWORK(PNR), (N-1)*L,
$ R(I+KK,RNK+1), LDR, DWORK(PPR+KK), (N-1)*L,
$ DWORK(PNR+KK), (N-1)*L, DWORK(PDW),
$ DWORK(PDW+5*L), LDWORK-PDW-5*L+1, IERR )
END IF
C
C Apply reduction to Q.
C
IF ( COMPQ ) THEN
CALL MB02CV( 'Deficient', 'NoStructure', KK, MK, PP,
$ L+K-RDEF, -1, RRNK, R(I,RNK+1), LDR,
$ DWORK(PPR), (N-1)*L, DWORK(PNR), (N-1)*L,
$ Q(1,RNK+1), LDQ, DWORK(PDQ), MK, DWORK(PNQ),
$ MK, DWORK(PDW), DWORK(PDW+5*L),
$ LDWORK-PDW-5*L+1, IERR )
END IF
C
C Inspection of the rank deficient columns:
C Look for small diagonal entries.
C
NZC = 0
C
DO 140 J = KK, RRNK + 1, -1
IF ( ABS( R(I+J-1,RNK+J) ).LE.LTOL1 ) NZC = NZC + 1
140 CONTINUE
C
C The last NZC columns of the generator cannot be removed.
C Now, decide whether for the other rank deficient columns
C it is safe to remove.
C
PT = PNR
C
DO 150 J = RRNK + 1, KK - NZC
TEMP = R(I+J-1,RNK+J)
CALL DSCAL( LEN-J-GAP, TEMP, R(I+J,RNK+J), 1 )
CALL DAXPY( LEN-J-GAP, -DWORK(PT+J-1), DWORK(PT+J), 1,
$ R(I+J,RNK+J), 1 )
IF ( DNRM2( LEN-J-GAP, R(I+J,RNK+J), 1 )
$ .GT.LTOL2*ABS( TEMP ) ) THEN
C
C Unlucky case:
C It is neither advisable to remove the whole column nor
C possible to remove the diagonal entries by Hyperbolic
C rotations.
C
INFO = 2
RETURN
END IF
PT = PT + ( N - 1 )*L
150 CONTINUE
C
C Annihilate unwanted elements in the factor R.
C
RRDF = KK - RRNK
CALL DLASET( 'All', I-1, RRNK, ZERO, ZERO, R(1,RNK+1), LDR )
CALL DLASET( 'Upper', L-1, RRNK-1, ZERO, ZERO, R(I,RNK+2),
$ LDR )
C
C Construct the generator for the next step.
C
IF ( .NOT.LAST ) THEN
C
C Compute KK for the next step.
C
KK = MIN( L+K-RDEF-RRDF+NZC, L )
KK = MIN( KK, MK-I-L+1 )
C
IF ( KK.LE.0 ) THEN
RNK = RNK + RRNK
GO TO 200
END IF
C
CALL DLASET( 'All', L, RRDF, ZERO, ZERO, R(I,RNK+RRNK+1),
$ LDR )
C
C The columns with small diagonal entries form parts of the
C new positive generator.
C
IF ( ( RRDF-NZC ).GT.0 .AND. NZC.GT.0 ) THEN
CPCOL = MIN( NZC, KK )
C
DO 160 J = RNK + RRNK + 1, RNK + RRNK + CPCOL
CALL DCOPY( LEN-L, R(I+L,J+RRDF-NZC), 1,
$ R(I+L,J), 1 )
160 CONTINUE
C
END IF
C
C Construct the leading parts of the positive generator.
C
CPCOL = MIN( RRNK, KK-NZC )
IF ( CPCOL.GT.0 ) THEN
C
DO 170 J = I, I + L - 1
CALL DCOPY( CPCOL, R(J,RNK+1), LDR,
$ R(JPVT(J)+L,RNK+RRNK+NZC+1), LDR )
170 CONTINUE
C
IF ( LEN.GT.2*L ) THEN
CALL DLACPY( 'All', LEN-2*L, CPCOL, R(I+L,RNK+1), LDR,
$ R(I+2*L,RNK+RRNK+NZC+1), LDR )
END IF
END IF
PPR = PPR + L
C
C Refill the leading parts of the positive generator.
C
CPCOL = MIN( K-RDEF, KK-RRNK-NZC )
IF ( CPCOL.GT.0 ) THEN
CALL DLACPY( 'All', LEN-L, CPCOL, DWORK(PPR), (N-1)*L,
$ R(I+L,RNK+2*RRNK+NZC+1), LDR )
PPR = PPR + CPCOL*( N - 1 )*L
END IF
PNR = PNR + ( RRDF - NZC )*( N - 1 )*L + L
C
C Do the same things for Q.
C
IF ( COMPQ ) THEN
IF ( ( RRDF - NZC ).GT.0 .AND. NZC.GT.0 ) THEN
CPCOL = MIN( NZC, KK )
C
DO 180 J = RNK + RRNK + 1, RNK + RRNK + CPCOL
CALL DCOPY( MK, Q(1,J+RRDF-NZC), 1, Q(1,J), 1 )
180 CONTINUE
C
END IF
CPCOL = MIN( RRNK, KK-NZC )
IF ( CPCOL.GT.0 ) THEN
CALL DLASET( 'All', K, CPCOL, ZERO, ZERO,
$ Q(1,RNK+RRNK+NZC+1), LDQ )
IF ( M.GT.1 )
$ CALL DLACPY( 'All', (M-1)*K, CPCOL, Q(1,RNK+1),
$ LDQ, Q(K+1,RNK+RRNK+NZC+1), LDQ )
END IF
CPCOL = MIN( K-RDEF, KK-RRNK-NZC )
IF ( CPCOL.GT.0 ) THEN
CALL DLACPY( 'All', MK, CPCOL, DWORK(PDQ), MK,
$ Q(1,RNK+2*RRNK+NZC+1), LDQ )
PDQ = PDQ + CPCOL*MK
END IF
PNQ = PNQ + ( RRDF - NZC )*MK
END IF
END IF
RNK = RNK + RRNK
RDEF = RDEF + RRDF - NZC
190 CONTINUE
C
200 CONTINUE
DWORK(1) = DBLE( WRKOPT )
DWORK(2) = LTOL1
DWORK(3) = LTOL2
C
C *** Last line of MB02JX ***
END
|