1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
SUBROUTINE MB02OD( SIDE, UPLO, TRANS, DIAG, NORM, M, N, ALPHA, A,
$ LDA, B, LDB, RCOND, TOL, IWORK, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve (if well-conditioned) one of the matrix equations
C
C op( A )*X = alpha*B, or X*op( A ) = alpha*B,
C
C where alpha is a scalar, X and B are m-by-n matrices, A is a unit,
C or non-unit, upper or lower triangular matrix and op( A ) is one
C of
C
C op( A ) = A or op( A ) = A'.
C
C An estimate of the reciprocal of the condition number of the
C triangular matrix A, in either the 1-norm or the infinity-norm, is
C also computed as
C
C RCOND = 1 / ( norm(A) * norm(inv(A)) ).
C
C and the specified matrix equation is solved only if RCOND is
C larger than a given tolerance TOL. In that case, the matrix X is
C overwritten on B.
C
C ARGUMENTS
C
C Mode Parameters
C
C SIDE CHARACTER*1
C Specifies whether op( A ) appears on the left or right
C of X as follows:
C = 'L': op( A )*X = alpha*B;
C = 'R': X*op( A ) = alpha*B.
C
C UPLO CHARACTER*1
C Specifies whether the matrix A is an upper or lower
C triangular matrix as follows:
C = 'U': A is an upper triangular matrix;
C = 'L': A is a lower triangular matrix.
C
C TRANS CHARACTER*1
C Specifies the form of op( A ) to be used in the matrix
C multiplication as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C DIAG CHARACTER*1
C Specifies whether or not A is unit triangular as follows:
C = 'U': A is assumed to be unit triangular;
C = 'N': A is not assumed to be unit triangular.
C
C NORM CHARACTER*1
C Specifies whether the 1-norm condition number or the
C infinity-norm condition number is required:
C = '1' or 'O': 1-norm;
C = 'I': Infinity-norm.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of B. M >= 0.
C
C N (input) INTEGER
C The number of columns of B. N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then A is not
C referenced and B need not be set before entry.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,k),
C where k is M when SIDE = 'L' and is N when SIDE = 'R'.
C On entry with UPLO = 'U', the leading k-by-k upper
C triangular part of this array must contain the upper
C triangular matrix and the strictly lower triangular part
C of A is not referenced.
C On entry with UPLO = 'L', the leading k-by-k lower
C triangular part of this array must contain the lower
C triangular matrix and the strictly upper triangular part
C of A is not referenced.
C Note that when DIAG = 'U', the diagonal elements of A are
C not referenced either, but are assumed to be unity.
C
C LDA INTEGER
C The leading dimension of array A.
C LDA >= max(1,M) when SIDE = 'L';
C LDA >= max(1,N) when SIDE = 'R'.
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading M-by-N part of this array must
C contain the right-hand side matrix B.
C On exit, if INFO = 0, the leading M-by-N part of this
C array contains the solution matrix X.
C Otherwise, this array is not modified by the routine.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= max(1,M).
C
C RCOND (output) DOUBLE PRECISION
C The reciprocal of the condition number of the matrix A,
C computed as RCOND = 1/(norm(A) * norm(inv(A))).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used to test for near singularity of
C the matrix A. If the user sets TOL > 0, then the given
C value of TOL is used as a lower bound for the reciprocal
C condition number of that matrix; a matrix whose estimated
C condition number is less than 1/TOL is considered to be
C nonsingular. If the user sets TOL <= 0, then an implicitly
C computed, default tolerance, defined by TOLDEF = k*k*EPS,
C is used instead, where EPS is the machine precision (see
C LAPACK Library routine DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (k)
C
C DWORK DOUBLE PRECISION array, dimension (3*k)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the matrix A is numerically singular, i.e. the
C condition number estimate of A (in the specified
C norm) exceeds 1/TOL.
C
C METHOD
C
C An estimate of the reciprocal of the condition number of the
C triangular matrix A (in the specified norm) is computed, and if
C this estimate is larger then the given (or default) tolerance,
C the specified matrix equation is solved using Level 3 BLAS
C routine DTRSM.
C
C
C REFERENCES
C
C None.
C
C NUMERICAL ASPECTS
C 2
C The algorithm requires k N/2 operations.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C REVISIONS
C
C February 20, 1998.
C
C KEYWORDS
C
C Condition number, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DIAG, NORM, SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDB, M, N
DOUBLE PRECISION ALPHA, RCOND, TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*)
C .. Local Scalars ..
LOGICAL LSIDE, ONENRM
INTEGER NROWA
DOUBLE PRECISION TOLDEF
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DTRCON, DTRSM, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C .. Executable Statements ..
C
LSIDE = LSAME( SIDE, 'L' )
IF( LSIDE )THEN
NROWA = M
ELSE
NROWA = N
END IF
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
C
C Test the input scalar arguments.
C
INFO = 0
IF( ( .NOT.LSIDE ).AND.( .NOT.LSAME( SIDE, 'R' ) ) )THEN
INFO = -1
ELSE IF( ( .NOT.LSAME( UPLO, 'U' ) ).AND.
$ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
INFO = -2
ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
$ ( .NOT.LSAME( TRANS, 'T' ) ).AND.
$ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
INFO = -3
ELSE IF( ( .NOT.LSAME( DIAG, 'U' ) ).AND.
$ ( .NOT.LSAME( DIAG, 'N' ) ) )THEN
INFO = -4
ELSE IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -5
ELSE IF( M.LT.0 )THEN
INFO = -6
ELSE IF( N.LT.0 )THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO = -10
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
INFO = -12
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( NROWA.EQ.0 ) THEN
RCOND = ONE
RETURN
END IF
C
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO )
$ TOLDEF = DBLE( NROWA*NROWA )*DLAMCH( 'Epsilon' )
C
CALL DTRCON( NORM, UPLO, DIAG, NROWA, A, LDA, RCOND, DWORK,
$ IWORK, INFO )
C
IF ( RCOND.GT.TOLDEF ) THEN
CALL DTRSM( SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, LDA, B,
$ LDB )
ELSE
INFO = 1
END IF
C *** Last line of MB02OD ***
END
|