1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
SUBROUTINE MB02PD( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
$ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
$ IWORK, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve (if well-conditioned) the matrix equations
C
C op( A )*X = B,
C
C where X and B are N-by-NRHS matrices, A is an N-by-N matrix and
C op( A ) is one of
C
C op( A ) = A or op( A ) = A'.
C
C Error bounds on the solution and a condition estimate are also
C provided.
C
C ARGUMENTS
C
C Mode Parameters
C
C FACT CHARACTER*1
C Specifies whether or not the factored form of the matrix A
C is supplied on entry, and if not, whether the matrix A
C should be equilibrated before it is factored.
C = 'F': On entry, AF and IPIV contain the factored form
C of A. If EQUED is not 'N', the matrix A has been
C equilibrated with scaling factors given by R
C and C. A, AF, and IPIV are not modified.
C = 'N': The matrix A will be copied to AF and factored.
C = 'E': The matrix A will be equilibrated if necessary,
C then copied to AF and factored.
C
C TRANS CHARACTER*1
C Specifies the form of the system of equations as follows:
C = 'N': A * X = B (No transpose);
C = 'T': A**T * X = B (Transpose);
C = 'C': A**H * X = B (Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of linear equations, i.e., the order of the
C matrix A. N >= 0.
C
C NRHS (input) INTEGER
C The number of right hand sides, i.e., the number of
C columns of the matrices B and X. NRHS >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A. If FACT = 'F' and EQUED is not 'N',
C then A must have been equilibrated by the scaling factors
C in R and/or C. A is not modified if FACT = 'F' or 'N',
C or if FACT = 'E' and EQUED = 'N' on exit.
C On exit, if EQUED .NE. 'N', the leading N-by-N part of
C this array contains the matrix A scaled as follows:
C EQUED = 'R': A := diag(R) * A;
C EQUED = 'C': A := A * diag(C);
C EQUED = 'B': A := diag(R) * A * diag(C).
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C AF (input or output) DOUBLE PRECISION array, dimension
C (LDAF,N)
C If FACT = 'F', then AF is an input argument and on entry
C the leading N-by-N part of this array must contain the
C factors L and U from the factorization A = P*L*U as
C computed by DGETRF. If EQUED .NE. 'N', then AF is the
C factored form of the equilibrated matrix A.
C If FACT = 'N', then AF is an output argument and on exit
C the leading N-by-N part of this array contains the factors
C L and U from the factorization A = P*L*U of the original
C matrix A.
C If FACT = 'E', then AF is an output argument and on exit
C the leading N-by-N part of this array contains the factors
C L and U from the factorization A = P*L*U of the
C equilibrated matrix A (see the description of A for the
C form of the equilibrated matrix).
C
C LDAF (input) INTEGER
C The leading dimension of the array AF. LDAF >= max(1,N).
C
C IPIV (input or output) INTEGER array, dimension (N)
C If FACT = 'F', then IPIV is an input argument and on entry
C it must contain the pivot indices from the factorization
C A = P*L*U as computed by DGETRF; row i of the matrix was
C interchanged with row IPIV(i).
C If FACT = 'N', then IPIV is an output argument and on exit
C it contains the pivot indices from the factorization
C A = P*L*U of the original matrix A.
C If FACT = 'E', then IPIV is an output argument and on exit
C it contains the pivot indices from the factorization
C A = P*L*U of the equilibrated matrix A.
C
C EQUED (input or output) CHARACTER*1
C Specifies the form of equilibration that was done as
C follows:
C = 'N': No equilibration (always true if FACT = 'N');
C = 'R': Row equilibration, i.e., A has been premultiplied
C by diag(R);
C = 'C': Column equilibration, i.e., A has been
C postmultiplied by diag(C);
C = 'B': Both row and column equilibration, i.e., A has
C been replaced by diag(R) * A * diag(C).
C EQUED is an input argument if FACT = 'F'; otherwise, it is
C an output argument.
C
C R (input or output) DOUBLE PRECISION array, dimension (N)
C The row scale factors for A. If EQUED = 'R' or 'B', A is
C multiplied on the left by diag(R); if EQUED = 'N' or 'C',
C R is not accessed. R is an input argument if FACT = 'F';
C otherwise, R is an output argument. If FACT = 'F' and
C EQUED = 'R' or 'B', each element of R must be positive.
C
C C (input or output) DOUBLE PRECISION array, dimension (N)
C The column scale factors for A. If EQUED = 'C' or 'B',
C A is multiplied on the right by diag(C); if EQUED = 'N'
C or 'R', C is not accessed. C is an input argument if
C FACT = 'F'; otherwise, C is an output argument. If
C FACT = 'F' and EQUED = 'C' or 'B', each element of C must
C be positive.
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB,NRHS)
C On entry, the leading N-by-NRHS part of this array must
C contain the right-hand side matrix B.
C On exit,
C if EQUED = 'N', B is not modified;
C if TRANS = 'N' and EQUED = 'R' or 'B', the leading
C N-by-NRHS part of this array contains diag(R)*B;
C if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', the leading
C N-by-NRHS part of this array contains diag(C)*B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
C If INFO = 0 or INFO = N+1, the leading N-by-NRHS part of
C this array contains the solution matrix X to the original
C system of equations. Note that A and B are modified on
C exit if EQUED .NE. 'N', and the solution to the
C equilibrated system is inv(diag(C))*X if TRANS = 'N' and
C EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or
C 'C' and EQUED = 'R' or 'B'.
C
C LDX (input) INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C RCOND (output) DOUBLE PRECISION
C The estimate of the reciprocal condition number of the
C matrix A after equilibration (if done). If RCOND is less
C than the machine precision (in particular, if RCOND = 0),
C the matrix is singular to working precision. This
C condition is indicated by a return code of INFO > 0.
C For efficiency reasons, RCOND is computed only when the
C matrix A is factored, i.e., for FACT = 'N' or 'E'. For
C FACT = 'F', RCOND is not used, but it is assumed that it
C has been computed and checked before the routine call.
C
C FERR (output) DOUBLE PRECISION array, dimension (NRHS)
C The estimated forward error bound for each solution vector
C X(j) (the j-th column of the solution matrix X).
C If XTRUE is the true solution corresponding to X(j),
C FERR(j) is an estimated upper bound for the magnitude of
C the largest element in (X(j) - XTRUE) divided by the
C magnitude of the largest element in X(j). The estimate
C is as reliable as the estimate for RCOND, and is almost
C always a slight overestimate of the true error.
C
C BERR (output) DOUBLE PRECISION array, dimension (NRHS)
C The componentwise relative backward error of each solution
C vector X(j) (i.e., the smallest relative change in
C any element of A or B that makes X(j) an exact solution).
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (4*N)
C On exit, DWORK(1) contains the reciprocal pivot growth
C factor norm(A)/norm(U). The "max absolute element" norm is
C used. If DWORK(1) is much less than 1, then the stability
C of the LU factorization of the (equilibrated) matrix A
C could be poor. This also means that the solution X,
C condition estimator RCOND, and forward error bound FERR
C could be unreliable. If factorization fails with
C 0 < INFO <= N, then DWORK(1) contains the reciprocal pivot
C growth factor for the leading INFO columns of A.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, and i is
C <= N: U(i,i) is exactly zero. The factorization
C has been completed, but the factor U is
C exactly singular, so the solution and error
C bounds could not be computed. RCOND = 0 is
C returned.
C = N+1: U is nonsingular, but RCOND is less than
C machine precision, meaning that the matrix is
C singular to working precision. Nevertheless,
C the solution and error bounds are computed
C because there are a number of situations
C where the computed solution can be more
C accurate than the value of RCOND would
C suggest.
C The positive values for INFO are set only when the
C matrix A is factored, i.e., for FACT = 'N' or 'E'.
C
C METHOD
C
C The following steps are performed:
C
C 1. If FACT = 'E', real scaling factors are computed to equilibrate
C the system:
C
C TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
C TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
C TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
C
C Whether or not the system will be equilibrated depends on the
C scaling of the matrix A, but if equilibration is used, A is
C overwritten by diag(R)*A*diag(C) and B by diag(R)*B
C (if TRANS='N') or diag(C)*B (if TRANS = 'T' or 'C').
C
C 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
C the matrix A (after equilibration if FACT = 'E') as
C A = P * L * U,
C where P is a permutation matrix, L is a unit lower triangular
C matrix, and U is upper triangular.
C
C 3. If some U(i,i)=0, so that U is exactly singular, then the
C routine returns with INFO = i. Otherwise, the factored form
C of A is used to estimate the condition number of the matrix A.
C If the reciprocal of the condition number is less than machine
C precision, INFO = N+1 is returned as a warning, but the routine
C still goes on to solve for X and compute error bounds as
C described below.
C
C 4. The system of equations is solved for X using the factored form
C of A.
C
C 5. Iterative refinement is applied to improve the computed
C solution matrix and calculate error bounds and backward error
C estimates for it.
C
C 6. If equilibration was used, the matrix X is premultiplied by
C diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
C that it solves the original system before equilibration.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., Sorensen, D.
C LAPACK Users' Guide: Second Edition, SIAM, Philadelphia, 1995.
C
C FURTHER COMMENTS
C
C This is a simplified version of the LAPACK Library routine DGESVX,
C useful when several sets of matrix equations with the same
C coefficient matrix A and/or A' should be solved.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 1999.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Condition number, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER EQUED, FACT, TRANS
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
DOUBLE PRECISION RCOND
C ..
C .. Array Arguments ..
INTEGER IPIV( * ), IWORK( * )
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
$ BERR( * ), C( * ), DWORK( * ), FERR( * ),
$ R( * ), X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
CHARACTER NORM
INTEGER I, INFEQU, J
DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
$ ROWCND, RPVGRW, SMLNUM
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE, DLANTR
EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR
C ..
C .. External Subroutines ..
EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
$ DLAQGE, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Save Statement ..
SAVE RPVGRW
C ..
C .. Executable Statements ..
C
INFO = 0
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
NOTRAN = LSAME( TRANS, 'N' )
IF( NOFACT .OR. EQUIL ) THEN
EQUED = 'N'
ROWEQU = .FALSE.
COLEQU = .FALSE.
ELSE
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
SMLNUM = DLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
END IF
C
C Test the input parameters.
C
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
$ THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
$ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
INFO = -10
ELSE
IF( ROWEQU ) THEN
RCMIN = BIGNUM
RCMAX = ZERO
DO 10 J = 1, N
RCMIN = MIN( RCMIN, R( J ) )
RCMAX = MAX( RCMAX, R( J ) )
10 CONTINUE
IF( RCMIN.LE.ZERO ) THEN
INFO = -11
ELSE IF( N.GT.0 ) THEN
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
ELSE
ROWCND = ONE
END IF
END IF
IF( COLEQU .AND. INFO.EQ.0 ) THEN
RCMIN = BIGNUM
RCMAX = ZERO
DO 20 J = 1, N
RCMIN = MIN( RCMIN, C( J ) )
RCMAX = MAX( RCMAX, C( J ) )
20 CONTINUE
IF( RCMIN.LE.ZERO ) THEN
INFO = -12
ELSE IF( N.GT.0 ) THEN
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
ELSE
COLCND = ONE
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -16
END IF
END IF
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02PD', -INFO )
RETURN
END IF
C
IF( EQUIL ) THEN
C
C Compute row and column scalings to equilibrate the matrix A.
C
CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
IF( INFEQU.EQ.0 ) THEN
C
C Equilibrate the matrix.
C
CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
$ EQUED )
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
END IF
END IF
C
C Scale the right hand side.
C
IF( NOTRAN ) THEN
IF( ROWEQU ) THEN
DO 40 J = 1, NRHS
DO 30 I = 1, N
B( I, J ) = R( I )*B( I, J )
30 CONTINUE
40 CONTINUE
END IF
ELSE IF( COLEQU ) THEN
DO 60 J = 1, NRHS
DO 50 I = 1, N
B( I, J ) = C( I )*B( I, J )
50 CONTINUE
60 CONTINUE
END IF
C
IF( NOFACT .OR. EQUIL ) THEN
C
C Compute the LU factorization of A.
C
CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
C
C Return if INFO is non-zero.
C
IF( INFO.NE.0 ) THEN
IF( INFO.GT.0 ) THEN
C
C Compute the reciprocal pivot growth factor of the
C leading rank-deficient INFO columns of A.
C
RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
$ DWORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = DLANGE( 'M', N, INFO, A, LDA, DWORK ) /
$ RPVGRW
END IF
DWORK( 1 ) = RPVGRW
RCOND = ZERO
END IF
RETURN
END IF
C
C Compute the norm of the matrix A and the
C reciprocal pivot growth factor RPVGRW.
C
IF( NOTRAN ) THEN
NORM = '1'
ELSE
NORM = 'I'
END IF
ANORM = DLANGE( NORM, N, N, A, LDA, DWORK )
RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, DWORK )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = DLANGE( 'M', N, N, A, LDA, DWORK ) / RPVGRW
END IF
C
C Compute the reciprocal of the condition number of A.
C
CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, DWORK, IWORK,
$ INFO )
C
C Set INFO = N+1 if the matrix is singular to working precision.
C
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
$ INFO = N + 1
END IF
C
C Compute the solution matrix X.
C
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
C
C Use iterative refinement to improve the computed solution and
C compute error bounds and backward error estimates for it.
C
CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
$ LDX, FERR, BERR, DWORK, IWORK, INFO )
C
C Transform the solution matrix X to a solution of the original
C system.
C
IF( NOTRAN ) THEN
IF( COLEQU ) THEN
DO 80 J = 1, NRHS
DO 70 I = 1, N
X( I, J ) = C( I )*X( I, J )
70 CONTINUE
80 CONTINUE
DO 90 J = 1, NRHS
FERR( J ) = FERR( J ) / COLCND
90 CONTINUE
END IF
ELSE IF( ROWEQU ) THEN
DO 110 J = 1, NRHS
DO 100 I = 1, N
X( I, J ) = R( I )*X( I, J )
100 CONTINUE
110 CONTINUE
DO 120 J = 1, NRHS
FERR( J ) = FERR( J ) / ROWCND
120 CONTINUE
END IF
C
DWORK( 1 ) = RPVGRW
RETURN
C
C *** Last line of MB02PD ***
END
|