1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
SUBROUTINE MB02QD( JOB, INIPER, M, N, NRHS, RCOND, SVLMAX, A, LDA,
$ B, LDB, Y, JPVT, RANK, SVAL, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a solution, optionally corresponding to specified free
C elements, to a real linear least squares problem:
C
C minimize || A * X - B ||
C
C using a complete orthogonal factorization of the M-by-N matrix A,
C which may be rank-deficient.
C
C Several right hand side vectors b and solution vectors x can be
C handled in a single call; they are stored as the columns of the
C M-by-NRHS right hand side matrix B and the N-by-NRHS solution
C matrix X.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies whether or not a standard least squares solution
C must be computed, as follows:
C = 'L': Compute a standard least squares solution (Y = 0);
C = 'F': Compute a solution with specified free elements
C (given in Y).
C
C INIPER CHARACTER*1
C Specifies whether an initial column permutation, defined
C by JPVT, must be performed, as follows:
C = 'P': Perform an initial column permutation;
C = 'N': Do not perform an initial column permutation.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C NRHS (input) INTEGER
C The number of right hand sides, i.e., the number of
C columns of the matrices B and X. NRHS >= 0.
C
C RCOND (input) DOUBLE PRECISION
C RCOND is used to determine the effective rank of A, which
C is defined as the order of the largest leading triangular
C submatrix R11 in the QR factorization with pivoting of A,
C whose estimated condition number is less than 1/RCOND.
C 0 <= RCOND <= 1.
C
C SVLMAX (input) DOUBLE PRECISION
C If A is a submatrix of another matrix C, and the rank
C decision should be related to that matrix, then SVLMAX
C should be an estimate of the largest singular value of C
C (for instance, the Frobenius norm of C). If this is not
C the case, the input value SVLMAX = 0 should work.
C SVLMAX >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading M-by-N part of this array must
C contain the given matrix A.
C On exit, the leading M-by-N part of this array contains
C details of its complete orthogonal factorization:
C the leading RANK-by-RANK upper triangular part contains
C the upper triangular factor T11 (see METHOD);
C the elements below the diagonal, with the entries 2 to
C min(M,N)+1 of the array DWORK, represent the orthogonal
C matrix Q as a product of min(M,N) elementary reflectors
C (see METHOD);
C the elements of the subarray A(1:RANK,RANK+1:N), with the
C next RANK entries of the array DWORK, represent the
C orthogonal matrix Z as a product of RANK elementary
C reflectors (see METHOD).
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB,NRHS)
C On entry, the leading M-by-NRHS part of this array must
C contain the right hand side matrix B.
C On exit, the leading N-by-NRHS part of this array contains
C the solution matrix X.
C If M >= N and RANK = N, the residual sum-of-squares for
C the solution in the i-th column is given by the sum of
C squares of elements N+1:M in that column.
C If NRHS = 0, this array is not referenced, and the routine
C returns the effective rank of A, and its QR factorization.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,M,N).
C
C Y (input) DOUBLE PRECISION array, dimension ( N*NRHS )
C If JOB = 'F', the elements Y(1:(N-RANK)*NRHS) are used as
C free elements in computing the solution (see METHOD).
C The remaining elements are not referenced.
C If JOB = 'L', or NRHS = 0, this array is not referenced.
C
C JPVT (input/output) INTEGER array, dimension (N)
C On entry with INIPER = 'P', if JPVT(i) <> 0, the i-th
C column of A is an initial column, otherwise it is a free
C column. Before the QR factorization of A, all initial
C columns are permuted to the leading positions; only the
C remaining free columns are moved as a result of column
C pivoting during the factorization.
C If INIPER = 'N', JPVT need not be set on entry.
C On exit, if JPVT(i) = k, then the i-th column of A*P
C was the k-th column of A.
C
C RANK (output) INTEGER
C The effective rank of A, i.e., the order of the submatrix
C R11. This is the same as the order of the submatrix T11
C in the complete orthogonal factorization of A.
C
C SVAL (output) DOUBLE PRECISION array, dimension ( 3 )
C The estimates of some of the singular values of the
C triangular factor R11:
C SVAL(1): largest singular value of R(1:RANK,1:RANK);
C SVAL(2): smallest singular value of R(1:RANK,1:RANK);
C SVAL(3): smallest singular value of R(1:RANK+1,1:RANK+1),
C if RANK < MIN( M, N ), or of R(1:RANK,1:RANK),
C otherwise.
C If the triangular factorization is a rank-revealing one
C (which will be the case if the leading columns were well-
C conditioned), then SVAL(1) will also be an estimate for
C the largest singular value of A, and SVAL(2) and SVAL(3)
C will be estimates for the RANK-th and (RANK+1)-st singular
C values of A, respectively.
C By examining these values, one can confirm that the rank
C is well defined with respect to the chosen value of RCOND.
C The ratio SVAL(1)/SVAL(2) is an estimate of the condition
C number of R(1:RANK,1:RANK).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension LDWORK
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and the entries 2 to min(M,N) + RANK + 1
C contain the scalar factors of the elementary reflectors
C used in the complete orthogonal factorization of A.
C Among the entries 2 to min(M,N) + 1, only the first RANK
C elements are useful, if INIPER = 'N'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( min(M,N)+3*N+1, 2*min(M,N)+NRHS )
C For optimum performance LDWORK should be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C If INIPER = 'P', the routine first computes a QR factorization
C with column pivoting:
C A * P = Q * [ R11 R12 ]
C [ 0 R22 ]
C with R11 defined as the largest leading submatrix whose estimated
C condition number is less than 1/RCOND. The order of R11, RANK,
C is the effective rank of A.
C If INIPER = 'N', the effective rank is estimated during a
C truncated QR factorization (with column pivoting) process, and
C the submatrix R22 is not upper triangular, but full and of small
C norm. (See SLICOT Library routines MB03OD or MB03OY, respectively,
C for further details.)
C
C Then, R22 is considered to be negligible, and R12 is annihilated
C by orthogonal transformations from the right, arriving at the
C complete orthogonal factorization:
C A * P = Q * [ T11 0 ] * Z
C [ 0 0 ]
C The solution is then
C X = P * Z' [ inv(T11)*Q1'*B ]
C [ Y ]
C where Q1 consists of the first RANK columns of Q, and Y contains
C free elements (if JOB = 'F'), or is zero (if JOB = 'L').
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C FURTHER COMMENTS
C
C Significant gain in efficiency is possible for small-rank problems
C using truncated QR factorization (option INIPER = 'N').
C
C CONTRIBUTORS
C
C P.Hr. Petkov, Technical University of Sofia, Oct. 1998,
C modification of the LAPACK routine DGELSX.
C V. Sima, Katholieke Universiteit Leuven, Jan. 1999, SLICOT Library
C version.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C KEYWORDS
C
C Least squares problems, QR factorization.
C
C ******************************************************************
C
DOUBLE PRECISION ZERO, ONE, DONE, NTDONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
$ NTDONE = ONE )
C ..
C .. Scalar Arguments ..
CHARACTER INIPER, JOB
INTEGER INFO, LDA, LDB, LDWORK, M, N, NRHS, RANK
DOUBLE PRECISION RCOND, SVLMAX
C ..
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ),
$ SVAL( 3 ), Y ( * )
C ..
C .. Local Scalars ..
LOGICAL LEASTS, PERMUT
INTEGER I, IASCL, IBSCL, J, K, MAXWRK, MINWRK, MN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, T1, T2
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DLABAD, DLACPY, DLASCL, DLASET, DORMQR, DORMRZ,
$ DTRSM, DTZRZF, MB03OD, MB03OY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C ..
C .. Executable Statements ..
C
MN = MIN( M, N )
LEASTS = LSAME( JOB, 'L' )
PERMUT = LSAME( INIPER, 'P' )
C
C Test the input scalar arguments.
C
INFO = 0
MINWRK = MAX( MN + 3*N + 1, 2*MN + NRHS )
IF( .NOT. ( LEASTS .OR. LSAME( JOB, 'F' ) ) ) THEN
INFO = -1
ELSE IF( .NOT. ( PERMUT .OR. LSAME( INIPER, 'N' ) ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -5
ELSE IF( RCOND.LT.ZERO .OR. RCOND.GT.ONE ) THEN
INFO = -6
ELSE IF( SVLMAX.LT.ZERO ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -11
ELSE IF( LDWORK.LT.MINWRK ) THEN
INFO = -17
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02QD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MN.EQ.0 ) THEN
RANK = 0
DWORK( 1 ) = ONE
RETURN
END IF
C
C Get machine parameters.
C
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
C
C Scale A, B if max entries outside range [SMLNUM,BIGNUM].
C
ANRM = DLANGE( 'M', M, N, A, LDA, DWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
C
C Scale matrix norm up to SMLNUM.
C
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
C
C Scale matrix norm down to BIGNUM.
C
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
C
C Matrix all zero. Return zero solution.
C
IF( NRHS.GT.0 )
$ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
RANK = 0
DWORK( 1 ) = ONE
RETURN
END IF
C
IF( NRHS.GT.0 ) THEN
BNRM = DLANGE( 'M', M, NRHS, B, LDB, DWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
C
C Scale matrix norm up to SMLNUM.
C
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB,
$ INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
C
C Scale matrix norm down to BIGNUM.
C
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB,
$ INFO )
IBSCL = 2
END IF
END IF
C
C Compute a rank-revealing QR factorization of A and estimate its
C effective rank using incremental condition estimation:
C A * P = Q * R.
C Workspace need min(M,N)+3*N+1;
C prefer min(M,N)+2*N+N*NB.
C Details of Householder transformations stored in DWORK(1:MN).
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of workspace needed at that point in the code,
C as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
MAXWRK = MINWRK
IF( PERMUT ) THEN
CALL MB03OD( 'Q', M, N, A, LDA, JPVT, RCOND, SVLMAX,
$ DWORK( 1 ), RANK, SVAL, DWORK( MN+1 ), LDWORK-MN,
$ INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( MN+1 ) ) + MN )
ELSE
CALL MB03OY( M, N, A, LDA, RCOND, SVLMAX, RANK, SVAL, JPVT,
$ DWORK( 1 ), DWORK( MN+1 ), INFO )
END IF
C
C Logically partition R = [ R11 R12 ]
C [ 0 R22 ],
C where R11 = R(1:RANK,1:RANK).
C
C [R11,R12] = [ T11, 0 ] * Z.
C
C Details of Householder transformations stored in DWORK(MN+1:2*MN).
C Workspace need 3*min(M,N);
C prefer 2*min(M,N)+min(M,N)*NB.
C
IF( RANK.LT.N ) THEN
CALL DTZRZF( RANK, N, A, LDA, DWORK( MN+1 ), DWORK( 2*MN+1 ),
$ LDWORK-2*MN, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( 2*MN+1 ) ) + 2*MN )
END IF
C
IF( NRHS.GT.0 ) THEN
C
C B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS).
C
C Workspace: need 2*min(M,N)+NRHS;
C prefer min(M,N)+NRHS*NB.
C
CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA,
$ DWORK( 1 ), B, LDB, DWORK( 2*MN+1 ), LDWORK-2*MN,
$ INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( 2*MN+1 ) ) + 2*MN )
C
C B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS).
C
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, ONE, A, LDA, B, LDB )
C
IF( RANK.LT.N ) THEN
C
C Set B(RANK+1:N,1:NRHS).
C
IF( LEASTS ) THEN
CALL DLASET( 'Full', N-RANK, NRHS, ZERO, ZERO,
$ B(RANK+1,1), LDB )
ELSE
CALL DLACPY( 'Full', N-RANK, NRHS, Y, N-RANK,
$ B(RANK+1,1), LDB )
END IF
C
C B(1:N,1:NRHS) := Z' * B(1:N,1:NRHS).
C
C Workspace need 2*min(M,N)+NRHS;
C prefer 2*min(M,N)+NRHS*NB.
C
CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
$ LDA, DWORK( MN+1 ), B, LDB, DWORK( 2*MN+1 ),
$ LDWORK-2*MN, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( 2*MN+1 ) ) + 2*MN )
END IF
C
C Additional workspace: NRHS.
C
C B(1:N,1:NRHS) := P * B(1:N,1:NRHS).
C
DO 50 J = 1, NRHS
DO 20 I = 1, N
DWORK( 2*MN+I ) = NTDONE
20 CONTINUE
DO 40 I = 1, N
IF( DWORK( 2*MN+I ).EQ.NTDONE ) THEN
IF( JPVT( I ).NE.I ) THEN
K = I
T1 = B( K, J )
T2 = B( JPVT( K ), J )
30 CONTINUE
B( JPVT( K ), J ) = T1
DWORK( 2*MN+K ) = DONE
T1 = T2
K = JPVT( K )
T2 = B( JPVT( K ), J )
IF( JPVT( K ).NE.I )
$ GO TO 30
B( I, J ) = T1
DWORK( 2*MN+K ) = DONE
END IF
END IF
40 CONTINUE
50 CONTINUE
C
C Undo scaling for B.
C
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB,
$ INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB,
$ INFO )
END IF
END IF
C
C Undo scaling for A.
C
IF( IASCL.EQ.1 ) THEN
IF( NRHS.GT.0 )
$ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB,
$ INFO )
CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
IF( NRHS.GT.0 )
$ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB,
$ INFO )
CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
END IF
C
DO 60 I = MN + RANK, 1, -1
DWORK( I+1 ) = DWORK( I )
60 CONTINUE
C
DWORK( 1 ) = MAXWRK
RETURN
C *** Last line of MB02QD ***
END
|