File: MB02RZ.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (216 lines) | stat: -rw-r--r-- 6,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
      SUBROUTINE MB02RZ( TRANS, N, NRHS, H, LDH, IPIV, B, LDB, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve a system of linear equations
C        H * X = B,  H' * X = B  or  H**H * X = B
C     with a complex upper Hessenberg N-by-N matrix H using the LU
C     factorization computed by MB02SZ.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANS   CHARACTER*1
C             Specifies the form of the system of equations:
C             = 'N':  H * X = B  (No transpose)
C             = 'T':  H'* X = B  (Transpose)
C             = 'C':  H**H * X = B  (Conjugate transpose)
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix H.  N >= 0.
C
C     NRHS    (input) INTEGER
C             The number of right hand sides, i.e., the number of
C             columns of the matrix B.  NRHS >= 0.
C
C     H       (input) COMPLEX*16 array, dimension (LDH,N)
C             The factors L and U from the factorization H = P*L*U
C             as computed by MB02SZ.
C
C     LDH     INTEGER
C             The leading dimension of the array H.  LDH >= max(1,N).
C
C     IPIV    (input) INTEGER array, dimension (N)
C             The pivot indices from MB02SZ; for 1<=i<=N, row i of the
C             matrix was interchanged with row IPIV(i).
C
C     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
C             On entry, the right hand side matrix B.
C             On exit, the solution matrix X.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     INFO    (output) INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine uses the factorization
C        H = P * L * U
C     where P is a permutation matrix, L is lower triangular with unit
C     diagonal elements (and one nonzero subdiagonal), and U is upper
C     triangular.
C
C     REFERENCES
C
C     -
C
C     NUMERICAL ASPECTS
C                                2
C     The algorithm requires 0( N x NRHS ) complex operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TB01FW by A.J. Laub, University of
C     Southern California, United States of America, May 1980.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Frequency response, Hessenberg form, matrix algebra.
C
C     ******************************************************************
C
C     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDB, LDH, N, NRHS
C     ..
C     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         B( LDB, * ), H( LDH, * )
C     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            J, JP
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           XERBLA, ZAXPY, ZSWAP, ZTRSM
C     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02RZ', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
C
      IF( NOTRAN ) THEN
C
C        Solve H * X = B.
C
C        Solve L * X = B, overwriting B with X.
C
C        L is represented as a product of permutations and unit lower
C        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
C        where each transformation L(i) is a rank-one modification of
C        the identity matrix.
C
         DO 10 J = 1, N - 1
            JP = IPIV( J )
            IF( JP.NE.J )
     $         CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
            CALL ZAXPY( NRHS, -H( J+1, J ), B( J, 1 ), LDB, B( J+1, 1 ),
     $                  LDB )
   10    CONTINUE
C
C        Solve U * X = B, overwriting B with X.
C
         CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
     $               NRHS, ONE, H, LDH, B, LDB )
C
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
C
C        Solve H' * X = B.
C
C        Solve U' * X = B, overwriting B with X.
C
         CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
     $               H, LDH, B, LDB )
C
C        Solve L' * X = B, overwriting B with X.
C
         DO 20 J = N - 1, 1, -1
            CALL ZAXPY( NRHS, -H( J+1, J ), B( J+1, 1 ), LDB, B( J, 1 ),
     $                  LDB )
            JP = IPIV( J )
            IF( JP.NE.J )
     $         CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
   20    CONTINUE
C
      ELSE
C
C        Solve H**H * X = B.
C
C        Solve U**H * X = B, overwriting B with X.
C
         CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
     $               H, LDH, B, LDB )
C
C        Solve L**H * X = B, overwriting B with X.
C
         DO 30 J = N - 1, 1, -1
            CALL ZAXPY( NRHS, -DCONJG( H( J+1, J ) ), B( J+1, 1 ), LDB,
     $                  B( J, 1 ), LDB )
            JP = IPIV( J )
            IF( JP.NE.J )
     $         CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
   30    CONTINUE
C
      END IF
C
      RETURN
C *** Last line of MB02RZ ***
      END