1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
SUBROUTINE MB02RZ( TRANS, N, NRHS, H, LDH, IPIV, B, LDB, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve a system of linear equations
C H * X = B, H' * X = B or H**H * X = B
C with a complex upper Hessenberg N-by-N matrix H using the LU
C factorization computed by MB02SZ.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANS CHARACTER*1
C Specifies the form of the system of equations:
C = 'N': H * X = B (No transpose)
C = 'T': H'* X = B (Transpose)
C = 'C': H**H * X = B (Conjugate transpose)
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix H. N >= 0.
C
C NRHS (input) INTEGER
C The number of right hand sides, i.e., the number of
C columns of the matrix B. NRHS >= 0.
C
C H (input) COMPLEX*16 array, dimension (LDH,N)
C The factors L and U from the factorization H = P*L*U
C as computed by MB02SZ.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= max(1,N).
C
C IPIV (input) INTEGER array, dimension (N)
C The pivot indices from MB02SZ; for 1<=i<=N, row i of the
C matrix was interchanged with row IPIV(i).
C
C B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
C On entry, the right hand side matrix B.
C On exit, the solution matrix X.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C INFO (output) INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine uses the factorization
C H = P * L * U
C where P is a permutation matrix, L is lower triangular with unit
C diagonal elements (and one nonzero subdiagonal), and U is upper
C triangular.
C
C REFERENCES
C
C -
C
C NUMERICAL ASPECTS
C 2
C The algorithm requires 0( N x NRHS ) complex operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TB01FW by A.J. Laub, University of
C Southern California, United States of America, May 1980.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Frequency response, Hessenberg form, matrix algebra.
C
C ******************************************************************
C
C .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
C .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDB, LDH, N, NRHS
C ..
C .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 B( LDB, * ), H( LDH, * )
C .. Local Scalars ..
LOGICAL NOTRAN
INTEGER J, JP
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL XERBLA, ZAXPY, ZSWAP, ZTRSM
C .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX
C .. Executable Statements ..
C
C Test the input parameters.
C
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02RZ', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
C
IF( NOTRAN ) THEN
C
C Solve H * X = B.
C
C Solve L * X = B, overwriting B with X.
C
C L is represented as a product of permutations and unit lower
C triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
C where each transformation L(i) is a rank-one modification of
C the identity matrix.
C
DO 10 J = 1, N - 1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
CALL ZAXPY( NRHS, -H( J+1, J ), B( J, 1 ), LDB, B( J+1, 1 ),
$ LDB )
10 CONTINUE
C
C Solve U * X = B, overwriting B with X.
C
CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
$ NRHS, ONE, H, LDH, B, LDB )
C
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
C
C Solve H' * X = B.
C
C Solve U' * X = B, overwriting B with X.
C
CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
$ H, LDH, B, LDB )
C
C Solve L' * X = B, overwriting B with X.
C
DO 20 J = N - 1, 1, -1
CALL ZAXPY( NRHS, -H( J+1, J ), B( J+1, 1 ), LDB, B( J, 1 ),
$ LDB )
JP = IPIV( J )
IF( JP.NE.J )
$ CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
20 CONTINUE
C
ELSE
C
C Solve H**H * X = B.
C
C Solve U**H * X = B, overwriting B with X.
C
CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
$ H, LDH, B, LDB )
C
C Solve L**H * X = B, overwriting B with X.
C
DO 30 J = N - 1, 1, -1
CALL ZAXPY( NRHS, -DCONJG( H( J+1, J ) ), B( J+1, 1 ), LDB,
$ B( J, 1 ), LDB )
JP = IPIV( J )
IF( JP.NE.J )
$ CALL ZSWAP( NRHS, B( JP, 1 ), LDB, B( J, 1 ), LDB )
30 CONTINUE
C
END IF
C
RETURN
C *** Last line of MB02RZ ***
END
|