1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
SUBROUTINE MB02UV( N, A, LDA, IPIV, JPIV, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute an LU factorization, using complete pivoting, of the
C N-by-N matrix A. The factorization has the form A = P * L * U * Q,
C where P and Q are permutation matrices, L is lower triangular with
C unit diagonal elements and U is upper triangular.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A to be factored.
C On exit, the leading N-by-N part of this array contains
C the factors L and U from the factorization A = P*L*U*Q;
C the unit diagonal elements of L are not stored. If U(k, k)
C appears to be less than SMIN, U(k, k) is given the value
C of SMIN, giving a nonsingular perturbed system.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1, N).
C
C IPIV (output) INTEGER array, dimension (N)
C The pivot indices; for 1 <= i <= N, row i of the
C matrix has been interchanged with row IPIV(i).
C
C JPIV (output) INTEGER array, dimension (N)
C The pivot indices; for 1 <= j <= N, column j of the
C matrix has been interchanged with column JPIV(j).
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C = k: U(k, k) is likely to produce owerflow if one tries
C to solve for x in Ax = b. So U is perturbed to get
C a nonsingular system. This is a warning.
C
C FURTHER COMMENTS
C
C In the interests of speed, this routine does not check the input
C for errors. It should only be used to factorize matrices A of
C very small order.
C
C CONTRIBUTOR
C
C Bo Kagstrom and Peter Poromaa, Univ. of Umea, Sweden, Nov. 1993.
C
C REVISIONS
C
C April 1998 (T. Penzl).
C Sep. 1998 (V. Sima).
C March 1999 (V. Sima).
C March 2004 (V. Sima).
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, N
C .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
DOUBLE PRECISION A( LDA, * )
C .. Local Scalars ..
INTEGER I, IP, IPV, JP, JPV
DOUBLE PRECISION BIGNUM, EPS, SMIN, SMLNUM, XMAX
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C .. External Subroutines ..
EXTERNAL DGER, DLABAD, DSCAL, DSWAP
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C .. Executable Statements ..
C
C Set constants to control owerflow.
INFO = 0
EPS = DLAMCH( 'Precision' )
SMLNUM = DLAMCH( 'Safe minimum' ) / EPS
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
C
C Find max element in matrix A.
C
IPV = 1
JPV = 1
XMAX = ZERO
DO 40 JP = 1, N
DO 20 IP = 1, N
IF ( ABS( A(IP, JP) ) .GT. XMAX ) THEN
XMAX = ABS( A(IP, JP) )
IPV = IP
JPV = JP
ENDIF
20 CONTINUE
40 CONTINUE
SMIN = MAX( EPS * XMAX, SMLNUM )
C
C Swap rows.
C
IF ( IPV .NE. 1 ) CALL DSWAP( N, A(IPV, 1), LDA, A(1, 1), LDA )
IPIV(1) = IPV
C
C Swap columns.
C
IF ( JPV .NE. 1 ) CALL DSWAP( N, A(1, JPV), 1, A(1, 1), 1 )
JPIV(1) = JPV
C
C Check for singularity.
C
IF ( ABS( A(1, 1) ) .LT. SMIN ) THEN
INFO = 1
A(1, 1) = SMIN
ENDIF
IF ( N.GT.1 ) THEN
CALL DSCAL( N - 1, ONE / A(1, 1), A(2, 1), 1 )
CALL DGER( N - 1, N - 1, -ONE, A(2, 1), 1, A(1, 2), LDA,
$ A(2, 2), LDA )
ENDIF
C
C Factorize the rest of A with complete pivoting.
C Set pivots less than SMIN to SMIN.
C
DO 100 I = 2, N - 1
C
C Find max element in remaining matrix.
C
IPV = I
JPV = I
XMAX = ZERO
DO 80 JP = I, N
DO 60 IP = I, N
IF ( ABS( A(IP, JP) ) .GT. XMAX ) THEN
XMAX = ABS( A(IP, JP) )
IPV = IP
JPV = JP
ENDIF
60 CONTINUE
80 CONTINUE
C
C Swap rows.
C
IF ( IPV .NE. I ) CALL DSWAP( N, A(IPV, 1), LDA, A(I, 1), LDA )
IPIV(I) = IPV
C
C Swap columns.
C
IF ( JPV .NE. I ) CALL DSWAP( N, A(1, JPV), 1, A(1, I), 1 )
JPIV(I) = JPV
C
C Check for almost singularity.
C
IF ( ABS( A(I, I) ) .LT. SMIN ) THEN
INFO = I
A(I, I) = SMIN
ENDIF
CALL DSCAL( N - I, ONE / A(I, I), A(I + 1, I), 1 )
CALL DGER( N - I, N - I, -ONE, A(I + 1, I), 1, A(I, I + 1),
$ LDA, A(I + 1, I + 1), LDA )
100 CONTINUE
IF ( ABS( A(N, N) ) .LT. SMIN ) THEN
INFO = N
A(N, N) = SMIN
ENDIF
C
RETURN
C *** Last line of MB02UV ***
END
|