File: MB02VD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (187 lines) | stat: -rw-r--r-- 6,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
      SUBROUTINE MB02VD( TRANS, M, N, A, LDA, IPIV, B, LDB, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the solution to a real system of linear equations
C        X * op(A) = B,
C     where op(A) is either A or its transpose, A is an N-by-N matrix,
C     and X and B are M-by-N matrices.
C     The LU decomposition with partial pivoting and row interchanges,
C     A = P * L * U, is used, where P is a permutation matrix, L is unit
C     lower triangular, and U is upper triangular.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANS   CHARACTER*1
C             Specifies the form of op(A) to be used as follows:
C             = 'N':  op(A) = A;
C             = 'T':  op(A) = A';
C             = 'C':  op(A) = A'.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrix B.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrix B, and the order of
C             the matrix A.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the coefficient matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the factors L and U from the factorization A = P*L*U;
C             the unit diagonal elements of L are not stored.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     IPIV    (output) INTEGER array, dimension (N)
C             The pivot indices that define the permutation matrix P;
C             row i of the matrix was interchanged with row IPIV(i).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading M-by-N part of this array must
C             contain the right hand side matrix B.
C             On exit, if INFO = 0, the leading M-by-N part of this
C             array contains the solution matrix X.
C
C     LDB     (input) INTEGER
C             The leading dimension of the array B.  LDB >= max(1,M).
C
C     INFO    (output) INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, U(i,i) is exactly zero.  The
C                   factorization has been completed, but the factor U
C                   is exactly singular, so the solution could not be
C                   computed.
C
C     METHOD
C
C     The LU decomposition with partial pivoting and row interchanges is
C     used to factor A as
C        A = P * L * U,
C     where P is a permutation matrix, L is unit lower triangular, and
C     U is upper triangular.  The factored form of A is then used to
C     solve the system of equations X * A = B or X * A' = B.
C
C     FURTHER COMMENTS
C
C     This routine enables to solve the system X * A = B or X * A' = B
C     as easily and efficiently as possible; it is similar to the LAPACK
C     Library routine DGESV, which solves A * X = B.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, linear algebra.
C
C    ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE
      PARAMETER         ( ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDA, LDB, M, N
C     ..
C     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            TRAN
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGETRF, DTRSM, MA02GD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C     ..
C     .. Executable Statements ..
C
C     Test the scalar input parameters.
C
      INFO = 0
      TRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF( .NOT.TRAN .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -8
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02VD', -INFO )
         RETURN
      END IF
C
C     Compute the LU factorization of A.
C
      CALL DGETRF( N, N, A, LDA, IPIV, INFO )
C
      IF( INFO.EQ.0 ) THEN
         IF( TRAN ) THEN
C
C           Compute X = B * A**(-T).
C
            CALL MA02GD( M, B, LDB, 1, N, IPIV, 1 )
            CALL DTRSM(  'Right', 'Lower', 'Transpose', 'Unit', M, N,
     $                   ONE, A, LDA, B, LDB )
            CALL DTRSM(  'Right', 'Upper', 'Transpose', 'NonUnit', M,
     $                   N, ONE, A, LDA, B, LDB )
         ELSE
C
C           Compute X = B * A**(-1).
C
            CALL DTRSM(  'Right', 'Upper', 'NoTranspose', 'NonUnit', M,
     $                   N, ONE, A, LDA, B, LDB )
            CALL DTRSM(  'Right', 'Lower', 'NoTranspose', 'Unit', M, N,
     $                   ONE, A, LDA, B, LDB )
            CALL MA02GD( M, B, LDB, 1, N, IPIV, -1 )
         END IF
      END IF
      RETURN
C
C *** Last line of MB02VD ***
      END