1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
SUBROUTINE MB02WD( FORM, F, N, IPAR, LIPAR, DPAR, LDPAR, ITMAX,
$ A, LDA, B, INCB, X, INCX, TOL, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve the system of linear equations Ax = b, with A symmetric,
C positive definite, or, in the implicit form, f(A, x) = b, where
C y = f(A, x) is a symmetric positive definite linear mapping
C from x to y, using the conjugate gradient (CG) algorithm without
C preconditioning.
C
C ARGUMENTS
C
C Mode Parameters
C
C FORM CHARACTER*1
C Specifies the form of the system of equations, as
C follows:
C = 'U' : Ax = b, the upper triagular part of A is used;
C = 'L' : Ax = b, the lower triagular part of A is used;
C = 'F' : the implicit, function form, f(A, x) = b.
C
C Function Parameters
C
C F EXTERNAL
C If FORM = 'F', then F is a subroutine which calculates the
C value of f(A, x), for given A and x.
C If FORM <> 'F', then F is not called.
C
C F must have the following interface:
C
C SUBROUTINE F( N, IPAR, LIPAR, DPAR, LDPAR, A, LDA, X,
C $ INCX, DWORK, LDWORK, INFO )
C
C where
C
C N (input) INTEGER
C The dimension of the vector x. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of
C the matrix A.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C The real parameters needed for solving the
C problem.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 0.
C
C A (input) DOUBLE PRECISION array, dimension
C (LDA, NC), where NC is the number of columns.
C The leading NR-by-NC part of this array must
C contain the (compressed) representation of the
C matrix A, where NR is the number of rows of A
C (function of IPAR entries).
C
C LDA (input) INTEGER
C The leading dimension of the array A.
C LDA >= MAX(1,NR).
C
C X (input/output) DOUBLE PRECISION array, dimension
C (1+(N-1)*INCX)
C On entry, this incremented array must contain the
C vector x.
C On exit, this incremented array contains the value
C of the function f, y = f(A, x).
C
C INCX (input) INTEGER
C The increment for the elements of X. INCX > 0.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C The workspace array for subroutine F.
C
C LDWORK (input) INTEGER
C The size of the array DWORK (as large as needed
C in the subroutine F).
C
C INFO INTEGER
C Error indicator, set to a negative value if an
C input scalar argument is erroneous, and to
C positive values for other possible errors in the
C subroutine F. The LAPACK Library routine XERBLA
C should be used in conjunction with negative INFO.
C INFO must be zero if the subroutine finished
C successfully.
C
C Parameters marked with "(input)" must not be changed.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The dimension of the vector x. N >= 0.
C If FORM = 'U' or FORM = 'L', N is also the number of rows
C and columns of the matrix A.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C If FORM = 'F', the integer parameters describing the
C structure of the matrix A.
C This parameter is ignored if FORM = 'U' or FORM = 'L'.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C If FORM = 'F', the real parameters needed for solving
C the problem.
C This parameter is ignored if FORM = 'U' or FORM = 'L'.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 0.
C
C ITMAX (input) INTEGER
C The maximal number of iterations to do. ITMAX >= 0.
C
C A (input) DOUBLE PRECISION array,
C dimension (LDA, NC), if FORM = 'F',
C dimension (LDA, N), otherwise.
C If FORM = 'F', the leading NR-by-NC part of this array
C must contain the (compressed) representation of the
C matrix A, where NR and NC are the number of rows and
C columns, respectively, of the matrix A. The array A is
C not referenced by this routine itself, except in the
C calls to the routine F.
C If FORM <> 'F', the leading N-by-N part of this array
C must contain the matrix A, assumed to be symmetric;
C only the triangular part specified by FORM is referenced.
C
C LDA (input) INTEGER
C The leading dimension of array A.
C LDA >= MAX(1,NR), if FORM = 'F';
C LDA >= MAX(1,N), if FORM = 'U' or FORM = 'L'.
C
C B (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCB)
C The incremented vector b.
C
C INCB (input) INTEGER
C The increment for the elements of B. INCB > 0.
C
C X (input/output) DOUBLE PRECISION array, dimension
C (1+(N-1)*INCX)
C On entry, this incremented array must contain an initial
C approximation of the solution. If an approximation is not
C known, setting all elements of x to zero is recommended.
C On exit, this incremented array contains the computed
C solution x of the system of linear equations.
C
C INCX (input) INTEGER
C The increment for the elements of X. INCX > 0.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If TOL > 0, absolute tolerance for the iterative process.
C The algorithm will stop if || Ax - b ||_2 <= TOL. Since
C it is advisable to use a relative tolerance, say TOLER,
C TOL should be chosen as TOLER*|| b ||_2.
C If TOL <= 0, a default relative tolerance,
C TOLDEF = N*EPS*|| b ||_2, is used, where EPS is the
C machine precision (see LAPACK Library routine DLAMCH).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the number of
C iterations performed and DWORK(2) returns the remaining
C residual, || Ax - b ||_2.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(2,3*N + DWORK(F)), if FORM = 'F',
C where DWORK(F) is the workspace needed by F;
C LDWORK >= MAX(2,3*N), if FORM = 'U' or FORM = 'L'.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: the algorithm finished after ITMAX > 0 iterations,
C without achieving the desired precision TOL;
C = 2: ITMAX is zero; in this case, DWORK(2) is not set.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, then F returned with INFO = i.
C
C METHOD
C
C The following CG iteration is used for solving Ax = b:
C
C Start: q(0) = r(0) = Ax - b
C
C < q(k), r(k) >
C ALPHA(k) = - ----------------
C < q(k), Aq(k) >
C x(k+1) = x(k) - ALPHA(k) * q(k)
C r(k+1) = r(k) - ALPHA(k) * Aq(k)
C < r(k+1), r(k+1) >
C BETA(k) = --------------------
C < r(k) , r(k) >
C q(k+1) = r(k+1) + BETA(k) * q(k)
C
C where <.,.> denotes the scalar product.
C
C REFERENCES
C
C [1] Golub, G.H. and van Loan, C.F.
C Matrix Computations. Third Edition.
C M. D. Johns Hopkins University Press, Baltimore, pp. 520-528,
C 1996.
C
C [2] Luenberger, G.
C Introduction to Linear and Nonlinear Programming.
C Addison-Wesley, Reading, MA, p.187, York, 1973.
C
C NUMERICAL ASPECTS
C
C Since the residuals are orthogonal in the scalar product
C <x, y> = y'Ax, the algorithm is theoretically finite. But rounding
C errors cause a loss of orthogonality, so a finite termination
C cannot be guaranteed. However, one can prove [2] that
C
C || x-x_k ||_A := sqrt( (x-x_k)' * A * (x-x_k) )
C
C sqrt( kappa_2(A) ) - 1
C <= 2 || x-x_0 ||_A * ------------------------ ,
C sqrt( kappa_2(A) ) + 1
C
C where kappa_2 is the condition number.
C
C The approximate number of floating point operations is
C (k*(N**2 + 15*N) + N**2 + 3*N)/2, if FORM <> 'F',
C k*(f + 7*N) + f, if FORM = 'F',
C where k is the number of CG iterations performed, and f is the
C number of floating point operations required by the subroutine F.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C March, 2002.
C
C KEYWORDS
C
C Conjugate gradients, convergence, linear system of equations,
C matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER FORM
INTEGER INCB, INCX, INFO, ITMAX, IWARN, LDA, LDPAR,
$ LDWORK, LIPAR, N
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(*), DPAR(*), DWORK(*), X(*)
INTEGER IPAR(*)
C .. Local Scalars ..
DOUBLE PRECISION ALPHA, BETA, RES, RESOLD, TOLDEF
INTEGER AQ, DWLEFT, K, R
LOGICAL MAT
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DDOT, DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DSCAL, DSYMV, F, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MAT = LSAME( FORM, 'U' ) .OR. LSAME( FORM, 'L' )
C
C Check the scalar input parameters.
C
IWARN = 0
INFO = 0
IF( .NOT.( MAT .OR. LSAME( FORM, 'F' ) ) ) THEN
INFO = -1
ELSEIF ( N.LT.0 ) THEN
INFO = -3
ELSEIF ( .NOT. MAT .AND. LIPAR.LT.0 ) THEN
INFO = -5
ELSEIF ( .NOT. MAT .AND. LDPAR.LT.0 ) THEN
INFO = -7
ELSEIF ( ITMAX.LT.0 ) THEN
INFO = -8
ELSEIF ( LDA.LT.1 .OR. ( MAT .AND. LDA.LT.N ) ) THEN
INFO = -10
ELSEIF ( INCB.LE.0 ) THEN
INFO = -12
ELSEIF ( INCX.LE.0 ) THEN
INFO = -14
ELSEIF ( LDWORK.LT.MAX( 2, 3*N ) ) THEN
INFO = -17
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02WD', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
DWORK(1) = ZERO
DWORK(2) = ZERO
RETURN
ENDIF
C
IF ( ITMAX.EQ.0 ) THEN
DWORK(1) = ZERO
IWARN = 2
RETURN
ENDIF
C
C Set default tolerance, if needed.
C
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO )
$ TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )*DNRM2( N, B, INCB )
C
C Initialize local variables.
C
K = 0
C
C Vector q is stored in DWORK(1), A*q or f(A, q) in DWORK(AQ),
C and r in DWORK(R). The workspace for F starts in DWORK(DWLEFT).
C
AQ = N + 1
R = N + AQ
DWLEFT = N + R
C
C Prepare the first iteration, initialize r and q.
C
IF ( MAT ) THEN
CALL DCOPY( N, B, INCB, DWORK(R), 1 )
CALL DSYMV( FORM, N, ONE, A, LDA, X, INCX, -ONE, DWORK(R), 1 )
ELSE
CALL DCOPY( N, X, INCX, DWORK(R), 1 )
CALL F( N, IPAR, LIPAR, DPAR, LDPAR, A, LDA, DWORK(R), 1,
$ DWORK(DWLEFT), LDWORK-DWLEFT+1, INFO )
IF ( INFO.NE.0 )
$ RETURN
CALL DAXPY( N, -ONE, B, INCB, DWORK(R), 1 )
ENDIF
CALL DCOPY( N, DWORK(R), 1, DWORK, 1 )
C
RES = DNRM2( N, DWORK(R), 1 )
C
C Do nothing if x is already the solution.
C
IF ( RES.LE.TOLDEF ) GOTO 20
C
C Begin of the iteration loop.
C
C WHILE ( RES.GT.TOLDEF .AND. K.LE.ITMAX ) DO
10 CONTINUE
C
C Calculate A*q or f(A, q).
C
IF ( MAT ) THEN
CALL DSYMV( FORM, N, ONE, A, LDA, DWORK, 1, ZERO, DWORK(AQ),
$ 1 )
ELSE
CALL DCOPY( N, DWORK, 1, DWORK(AQ), 1 )
CALL F( N, IPAR, LIPAR, DPAR, LDPAR, A, LDA, DWORK(AQ), 1,
$ DWORK(DWLEFT), LDWORK-DWLEFT+1, INFO )
IF ( INFO.NE.0 )
$ RETURN
ENDIF
C
C Calculate ALPHA(k).
C
ALPHA = DDOT( N, DWORK, 1, DWORK(R), 1 ) /
$ DDOT( N, DWORK, 1, DWORK(AQ), 1 )
C
C x(k+1) = x(k) - ALPHA(k)*q(k).
C
CALL DAXPY( N, -ALPHA, DWORK, 1, X, INCX )
C
C r(k+1) = r(k) - ALPHA(k)*(A*q(k)).
C
CALL DAXPY( N, -ALPHA, DWORK(AQ), 1, DWORK(R), 1 )
C
C Save RES and calculate a new RES.
C
RESOLD = RES
RES = DNRM2( N, DWORK(R), 1 )
C
C Exit if tolerance is reached.
C
IF ( RES.LE.TOLDEF ) GOTO 20
C
C Calculate BETA(k).
C
BETA = ( RES/RESOLD )**2
C
C q(k+1) = r(k+1) + BETA(k)*q(k).
C
CALL DSCAL( N, BETA, DWORK, 1 )
CALL DAXPY( N, ONE, DWORK(R), 1, DWORK, 1 )
C
C End of the iteration loop.
C
K = K + 1
IF ( K.LT.ITMAX ) GOTO 10
C END WHILE 10
C
C Tolerance was not reached!
C
IWARN = 1
C
20 CONTINUE
C
DWORK(1) = K
DWORK(2) = RES
C
C *** Last line of MB02WD ***
END
|