1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
SUBROUTINE MB02XD( FORM, STOR, UPLO, F, M, N, NRHS, IPAR, LIPAR,
$ DPAR, LDPAR, A, LDA, B, LDB, ATA, LDATA, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve a set of systems of linear equations, A'*A*X = B, or,
C in the implicit form, f(A)*X = B, with A'*A or f(A) positive
C definite, using symmetric Gaussian elimination.
C
C ARGUMENTS
C
C Mode Parameters
C
C FORM CHARACTER*1
C Specifies the form in which the matrix A is provided, as
C follows:
C = 'S' : standard form, the matrix A is given;
C = 'F' : the implicit, function form f(A) is provided.
C If FORM = 'F', then the routine F is called to compute the
C matrix A'*A.
C
C STOR CHARACTER*1
C Specifies the storage scheme for the symmetric
C matrix A'*A, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C
C UPLO CHARACTER*1
C Specifies which part of the matrix A'*A is stored, as
C follows:
C = 'U' : the upper triagular part is stored;
C = 'L' : the lower triagular part is stored.
C
C Function Parameters
C
C F EXTERNAL
C If FORM = 'F', then F is a subroutine which calculates the
C value of f(A) = A'*A, for given A.
C If FORM = 'S', then F is not called.
C
C F must have the following interface:
C
C SUBROUTINE F( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, A,
C $ LDA, ATA, LDATA, DWORK, LDWORK, INFO )
C
C where
C
C STOR (input) CHARACTER*1
C Specifies the storage scheme for the symmetric
C matrix A'*A, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C
C UPLO (input) CHARACTER*1
C Specifies which part of the matrix A'*A is stored,
C as follows:
C = 'U' : the upper triagular part is stored;
C = 'L' : the lower triagular part is stored.
C
C N (input) INTEGER
C The order of the matrix A'*A. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of
C the matrix A.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C The real parameters needed for solving the
C problem.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 0.
C
C A (input) DOUBLE PRECISION array, dimension
C (LDA, NC), where NC is the number of columns.
C The leading NR-by-NC part of this array must
C contain the (compressed) representation of the
C matrix A, where NR is the number of rows of A
C (function of IPAR entries).
C
C LDA (input) INTEGER
C The leading dimension of the array A.
C LDA >= MAX(1,NR).
C
C ATA (output) DOUBLE PRECISION array,
C dimension (LDATA,N), if STOR = 'F',
C dimension (N*(N+1)/2), if STOR = 'P'.
C The leading N-by-N (if STOR = 'F'), or N*(N+1)/2
C (if STOR = 'P') part of this array contains the
C upper or lower triangle of the matrix A'*A,
C depending on UPLO = 'U', or UPLO = 'L',
C respectively, stored either as a two-dimensional,
C or one-dimensional array, depending on STOR.
C
C LDATA (input) INTEGER
C The leading dimension of the array ATA.
C LDATA >= MAX(1,N), if STOR = 'F'.
C LDATA >= 1, if STOR = 'P'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C The workspace array for subroutine F.
C
C LDWORK (input) INTEGER
C The size of the array DWORK (as large as needed
C in the subroutine F).
C
C INFO INTEGER
C Error indicator, set to a negative value if an
C input scalar argument is erroneous, and to
C positive values for other possible errors in the
C subroutine F. The LAPACK Library routine XERBLA
C should be used in conjunction with negative INFO.
C INFO must be zero if the subroutine finished
C successfully.
C
C Parameters marked with "(input)" must not be changed.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The order of the matrix A'*A, the number of columns of the
C matrix A, and the number of rows of the matrix X. N >= 0.
C
C NRHS (input) INTEGER
C The number of columns of the matrices B and X. NRHS >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C If FORM = 'F', the integer parameters describing the
C structure of the matrix A.
C This parameter is ignored if FORM = 'S'.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C If FORM = 'F', the real parameters needed for solving
C the problem.
C This parameter is ignored if FORM = 'S'.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 0.
C
C A (input) DOUBLE PRECISION array,
C dimension (LDA, N), if FORM = 'S',
C dimension (LDA, NC), if FORM = 'F', where NC is
C the number of columns.
C If FORM = 'S', the leading M-by-N part of this array
C must contain the matrix A.
C If FORM = 'F', the leading NR-by-NC part of this array
C must contain an appropriate representation of matrix A,
C where NR is the number of rows.
C If FORM = 'F', this array is not referenced by this
C routine itself, except in the call to the routine F.
C
C LDA INTEGER
C The leading dimension of array A.
C LDA >= MAX(1,M), if FORM = 'S';
C LDA >= MAX(1,NR), if FORM = 'F'.
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB, NRHS)
C On entry, the leading N-by-NRHS part of this array must
C contain the right hand side matrix B.
C On exit, if INFO = 0 and M (or NR) is nonzero, the leading
C N-by-NRHS part of this array contains the solution X of
C the set of systems of linear equations A'*A*X = B or
C f(A)*X = B. If M (or NR) is zero, then B is unchanged.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C ATA (output) DOUBLE PRECISION array,
C dimension (LDATA,N), if STOR = 'F',
C dimension (N*(N+1)/2), if STOR = 'P'.
C The leading N-by-N (if STOR = 'F'), or N*(N+1)/2 (if
C STOR = 'P') part of this array contains the upper or lower
C triangular Cholesky factor of the matrix A'*A, depending
C on UPLO = 'U', or UPLO = 'L', respectively, stored either
C as a two-dimensional, or one-dimensional array, depending
C on STOR.
C
C LDATA INTEGER
C The leading dimension of the array ATA.
C LDATA >= MAX(1,N), if STOR = 'F'.
C LDATA >= 1, if STOR = 'P'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, then the (i,i) element of the
C triangular factor of the matrix A'*A is exactly
C zero (the matrix A'*A is exactly singular);
C if INFO = j > n, then F returned with INFO = j-n.
C
C METHOD
C
C The matrix A'*A is built either directly (if FORM = 'S'), or
C implicitly, by calling the routine F. Then, A'*A is Cholesky
C factored and its factor is used to solve the set of systems of
C linear equations, A'*A*X = B.
C
C REFERENCES
C
C [1] Golub, G.H. and van Loan, C.F.
C Matrix Computations. Third Edition.
C M. D. Johns Hopkins University Press, Baltimore, 1996.
C
C [2] Anderson, E., Bai, Z., Bischof, C., Blackford, Demmel, J.,
C Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
C McKenney, A., Sorensen, D.
C LAPACK Users' Guide: Third Edition, SIAM, Philadelphia, 1999.
C
C NUMERICAL ASPECTS
C
C For speed, this routine does not check for near singularity of the
C matrix A'*A. If the matrix A is nearly rank deficient, then the
C computed X could be inaccurate. Estimates of the reciprocal
C condition numbers of the matrices A and A'*A can be obtained
C using LAPACK routines DGECON and DPOCON (DPPCON), respectively.
C
C The approximate number of floating point operations is
C (M+3)*N**2/2 + N**3/6 + NRHS*N**2, if FORM = 'S',
C f + N**3/6 + NRHS*N**2, if FORM = 'F',
C where M is the number of rows of A, and f is the number of
C floating point operations required by the subroutine F.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001.
C
C REVISIONS
C
C V. Sima, Mar. 2002.
C
C KEYWORDS
C
C Linear system of equations, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER FORM, STOR, UPLO
INTEGER INFO, LDA, LDATA, LDB, LDPAR, LDWORK, LIPAR, M,
$ N, NRHS
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ATA(*), B(LDB,*), DPAR(*), DWORK(*)
INTEGER IPAR(*)
C .. Local Scalars ..
INTEGER IERR, J, J1
LOGICAL FULL, MAT, UPPER
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMV, DPOTRF, DPOTRS, DPPTRF, DPPTRS, DSYRK, F,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
MAT = LSAME( FORM, 'S' )
FULL = LSAME( STOR, 'F' )
UPPER = LSAME( UPLO, 'U' )
C
C Check the scalar input parameters.
C
INFO = 0
IF( .NOT.( MAT .OR. LSAME( FORM, 'F' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( FULL .OR. LSAME( STOR, 'P' ) ) ) THEN
INFO = -2
ELSEIF ( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSEIF ( M.LT.0 ) THEN
INFO = -5
ELSEIF ( N.LT.0 ) THEN
INFO = -6
ELSEIF ( NRHS.LT.0 ) THEN
INFO = -7
ELSEIF ( .NOT. MAT .AND. LIPAR.LT.0 ) THEN
INFO = -9
ELSEIF ( .NOT. MAT .AND. LDPAR.LT.0 ) THEN
INFO = -11
ELSEIF ( LDA.LT.1 .OR. ( MAT .AND. LDA.LT.M ) ) THEN
INFO = -13
ELSEIF ( LDB.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSEIF ( LDATA.LT.1 .OR. ( FULL .AND. LDATA.LT.N ) ) THEN
INFO = -17
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02XD', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. ( MAT .AND. M.EQ.0 ) )
$ RETURN
C
C Build a triangle of the matrix A'*A.
C
IF ( MAT ) THEN
C
C Matrix A is given in the usual form.
C
IF ( FULL ) THEN
CALL DSYRK( UPLO, 'Transpose', N, M, ONE, A, LDA, ZERO,
$ ATA, LDATA )
ELSEIF ( UPPER ) THEN
J1 = 1
C
DO 10 J = 1, N
CALL DGEMV( 'Transpose', M, J, ONE, A, LDA, A(1,J), 1,
$ ZERO, ATA(J1), 1 )
J1 = J1 + J
10 CONTINUE
C
ELSE
J1 = 1
C
DO 20 J = 1, N
CALL DGEMV( 'Transpose', M, N-J+1, ONE, A(1,J), LDA,
$ A(1,J), 1, ZERO, ATA(J1), 1 )
J1 = J1 + N - J + 1
20 CONTINUE
C
ENDIF
C
ELSE
C
C Implicit form, A'*A = f(A).
C
CALL F( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, A, LDA, ATA,
$ LDATA, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = N + IERR
RETURN
ENDIF
C
ENDIF
C
C Factor the matrix A'*A.
C
IF ( FULL ) THEN
CALL DPOTRF( UPLO, N, ATA, LDATA, IERR )
ELSE
CALL DPPTRF( UPLO, N, ATA, IERR )
ENDIF
C
IF ( IERR.NE.0 ) THEN
INFO = IERR
RETURN
ENDIF
C
C Solve the set of linear systems.
C
IF ( FULL ) THEN
CALL DPOTRS( UPLO, N, NRHS, ATA, LDATA, B, LDB, IERR )
ELSE
CALL DPPTRS( UPLO, N, NRHS, ATA, B, LDB, IERR )
ENDIF
C
C *** Last line of MB02XD ***
END
|