File: MB02YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (371 lines) | stat: -rw-r--r-- 12,247 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
      SUBROUTINE MB02YD( COND, N, R, LDR, IPVT, DIAG, QTB, RANK, X, TOL,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To determine a vector x which solves the system of linear
C     equations
C
C           A*x = b ,     D*x = 0 ,
C
C     in the least squares sense, where A is an m-by-n matrix,
C     D is an n-by-n diagonal matrix, and b is an m-vector.
C     It is assumed that a QR factorization, with column pivoting, of A
C     is available, that is, A*P = Q*R, where P is a permutation matrix,
C     Q has orthogonal columns, and R is an upper triangular matrix
C     with diagonal elements of nonincreasing magnitude.
C     The routine needs the full upper triangle of R, the permutation
C     matrix P, and the first n components of Q'*b (' denotes the
C     transpose). The system A*x = b, D*x = 0, is then equivalent to
C
C           R*z = Q'*b ,  P'*D*P*z = 0 ,                             (1)
C
C     where x = P*z. If this system does not have full rank, then a
C     least squares solution is obtained. On output, MB02YD also
C     provides an upper triangular matrix S such that
C
C           P'*(A'*A + D*D)*P = S'*S .
C
C     The system (1) is equivalent to S*z = c , where c contains the
C     first n components of the vector obtained by applying to
C     [ (Q'*b)'  0 ]' the transformations which triangularized
C     [ R'  P'*D*P ]', getting S.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COND    CHARACTER*1
C             Specifies whether the condition of the matrix S should be
C             estimated, as follows:
C             = 'E' :  use incremental condition estimation and store
C                      the numerical rank of S in RANK;
C             = 'N' :  do not use condition estimation, but check the
C                      diagonal entries of S for zero values;
C             = 'U' :  use the rank already stored in RANK.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix R.  N >= 0.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR, N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the upper triangular matrix R.
C             On exit, the full upper triangle is unaltered, and the
C             strict lower triangle contains the strict upper triangle
C             (transposed) of the upper triangular matrix S.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     IPVT    (input) INTEGER array, dimension (N)
C             This array must define the permutation matrix P such that
C             A*P = Q*R. Column j of P is column IPVT(j) of the identity
C             matrix.
C
C     DIAG    (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the diagonal elements of the
C             matrix D.
C
C     QTB     (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the first n elements of the
C             vector Q'*b.
C
C     RANK    (input or output) INTEGER
C             On entry, if COND = 'U', this parameter must contain the
C             (numerical) rank of the matrix S.
C             On exit, if COND = 'E' or 'N', this parameter contains
C             the numerical rank of the matrix S, estimated according
C             to the value of COND.
C
C     X       (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the least squares solution of the
C             system A*x = b, D*x = 0.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             If COND = 'E', the tolerance to be used for finding the
C             rank of the matrix S. If the user sets TOL > 0, then the
C             given value of TOL is used as a lower bound for the
C             reciprocal condition number;  a (sub)matrix whose
C             estimated condition number is less than 1/TOL is
C             considered to be of full rank.  If the user sets TOL <= 0,
C             then an implicitly computed, default tolerance, defined by
C             TOLDEF = N*EPS,  is used instead, where EPS is the machine
C             precision (see LAPACK Library routine DLAMCH).
C             This parameter is not relevant if COND = 'U' or 'N'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, the first N elements of this array contain the
C             diagonal elements of the upper triangular matrix S, and
C             the next N elements contain the solution z.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 4*N, if COND =  'E';
C             LDWORK >= 2*N, if COND <> 'E'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Standard plane rotations are used to annihilate the elements of
C     the diagonal matrix D, updating the upper triangular matrix R
C     and the first n elements of the vector Q'*b. A basic least squares
C     solution is computed.
C
C     REFERENCES
C
C     [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C         User's Guide for MINPACK-1.
C         Applied Math. Division, Argonne National Laboratory, Argonne,
C         Illinois, Report ANL-80-74, 1980.
C
C     NUMERICAL ASPECTS
C                               2
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     FURTHER COMMENTS
C
C     This routine is a LAPACK-based modification of QRSOLV from the
C     MINPACK package [1], and with optional condition estimation.
C     The option COND = 'U' is useful when dealing with several
C     right-hand side vectors.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C     KEYWORDS
C
C     Linear system of equations, matrix operations, plane rotations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, SVLMAX
      PARAMETER         ( ZERO = 0.0D0, SVLMAX = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         COND
      INTEGER           INFO, LDR, LDWORK, N, RANK
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           IPVT(*)
      DOUBLE PRECISION  DIAG(*), DWORK(*), QTB(*), R(LDR,*), X(*)
C     .. Local Scalars ..
      DOUBLE PRECISION  CS, QTBPJ, SN, TEMP, TOLDEF
      INTEGER           I, J, K, L
      LOGICAL           ECOND, NCOND, UCOND
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(3)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLARTG, DROT, DSWAP, MB03OD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX
C     ..
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      ECOND = LSAME( COND, 'E' )
      NCOND = LSAME( COND, 'N' )
      UCOND = LSAME( COND, 'U' )
      INFO  = 0
      IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
         INFO = -1
      ELSEIF( N.LT.0 ) THEN
         INFO = -2
      ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSEIF ( UCOND .AND. ( RANK.LT.0 .OR. RANK.GT.N ) ) THEN
         INFO = -8
      ELSEIF ( LDWORK.LT.2*N .OR. ( ECOND .AND. LDWORK.LT.4*N ) ) THEN
         INFO = -12
      ENDIF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02YD', -INFO )
         RETURN
      ENDIF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         IF ( .NOT.UCOND )
     $      RANK = 0
         RETURN
      END IF
C
C     Copy R and Q'*b to preserve input and initialize S.
C     In particular, save the diagonal elements of R in X.
C
      DO 20 J = 1, N
         X(J) = R(J,J)
         DO 10 I = J, N
            R(I,J) = R(J,I)
   10    CONTINUE
   20 CONTINUE
C
      CALL DCOPY( N, QTB, 1, DWORK(N+1), 1 )
C
C     Eliminate the diagonal matrix D using Givens rotations.
C
      DO 50 J = 1, N
C
C        Prepare the row of D to be eliminated, locating the
C        diagonal element using P from the QR factorization.
C
         L = IPVT(J)
         IF ( DIAG(L).NE.ZERO ) THEN
            QTBPJ = ZERO
            DWORK(J) = DIAG(L)
C
            DO 30 K = J + 1, N
               DWORK(K) = ZERO
   30       CONTINUE
C
C           The transformations to eliminate the row of D modify only
C           a single element of Q'*b beyond the first n, which is
C           initially zero.
C
            DO 40 K = J, N
C
C              Determine a Givens rotation which eliminates the
C              appropriate element in the current row of D.
C
               IF ( DWORK(K).NE.ZERO ) THEN
C
                  CALL DLARTG( R(K,K), DWORK(K), CS, SN, TEMP )
C
C                 Compute the modified diagonal element of R and
C                 the modified elements of (Q'*b,0).
C                 Accumulate the tranformation in the row of S.
C
                  TEMP  =  CS*DWORK(N+K) + SN*QTBPJ
                  QTBPJ = -SN*DWORK(N+K) + CS*QTBPJ
                  DWORK(N+K) = TEMP
                  CALL DROT( N-K+1, R(K,K), 1, DWORK(K), 1, CS, SN )
C
               END IF
   40       CONTINUE
C
         END IF
C
C        Store the diagonal element of S and, if COND <> 'E', restore
C        the corresponding diagonal element of R.
C
         DWORK(J) = R(J,J)
         IF ( .NOT.ECOND )
     $      R(J,J) = X(J)
   50 CONTINUE
C
C     Solve the triangular system for z. If the system is singular,
C     then obtain a least squares solution.
C
      IF ( ECOND ) THEN
         TOLDEF = TOL
         IF ( TOLDEF.LE.ZERO ) THEN
C
C           Use the default tolerance in rank determination.
C
            TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
         END IF
C
C        Interchange the strict upper and lower triangular parts of R.
C
         DO 60 J = 2, N
            CALL DSWAP( J-1, R(1,J), 1, R(J,1), LDR )
   60    CONTINUE
C
C        Estimate the reciprocal condition number of S and set the rank.
C        Additional workspace: 2*N.
C
         CALL MB03OD( 'No QR', N, N, R, LDR, IPVT, TOLDEF, SVLMAX,
     $                DWORK, RANK, DUM, DWORK(2*N+1), LDWORK-2*N,
     $                INFO )
         R(1,1) = X(1)
C
C        Restore the strict upper and lower triangular parts of R.
C
         DO 70 J = 2, N
            CALL DSWAP( J-1, R(1,J), 1, R(J,1), LDR )
            R(J,J) = X(J)
   70    CONTINUE
C
      ELSEIF ( NCOND ) THEN
C
C        Determine rank(S) by checking zero diagonal entries.
C
         RANK = N
C
         DO 80 J = 1, N
            IF ( DWORK(J).EQ.ZERO .AND. RANK.EQ.N )
     $         RANK = J - 1
   80    CONTINUE
C
      END IF
C
      DUM(1) = ZERO
      IF ( RANK.LT.N )
     $   CALL DCOPY( N-RANK, DUM, 0, DWORK(N+RANK+1), 1 )
C
C     Solve S*z = c using back substitution.
C
      DO 100 J = RANK, 1, -1
         TEMP = ZERO
C
         DO 90 I = J + 1, RANK
            TEMP = TEMP + R(I,J)*DWORK(N+I)
   90    CONTINUE
C
         DWORK(N+J) = ( DWORK(N+J) - TEMP )/DWORK(J)
  100 CONTINUE
C
C     Permute the components of z back to components of x.
C
      DO 110 J = 1, N
         L    = IPVT(J)
         X(L) = DWORK(N+J)
  110 CONTINUE
C
      RETURN
C
C *** Last line of MB02YD ***
      END