1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
SUBROUTINE MB02YD( COND, N, R, LDR, IPVT, DIAG, QTB, RANK, X, TOL,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a vector x which solves the system of linear
C equations
C
C A*x = b , D*x = 0 ,
C
C in the least squares sense, where A is an m-by-n matrix,
C D is an n-by-n diagonal matrix, and b is an m-vector.
C It is assumed that a QR factorization, with column pivoting, of A
C is available, that is, A*P = Q*R, where P is a permutation matrix,
C Q has orthogonal columns, and R is an upper triangular matrix
C with diagonal elements of nonincreasing magnitude.
C The routine needs the full upper triangle of R, the permutation
C matrix P, and the first n components of Q'*b (' denotes the
C transpose). The system A*x = b, D*x = 0, is then equivalent to
C
C R*z = Q'*b , P'*D*P*z = 0 , (1)
C
C where x = P*z. If this system does not have full rank, then a
C least squares solution is obtained. On output, MB02YD also
C provides an upper triangular matrix S such that
C
C P'*(A'*A + D*D)*P = S'*S .
C
C The system (1) is equivalent to S*z = c , where c contains the
C first n components of the vector obtained by applying to
C [ (Q'*b)' 0 ]' the transformations which triangularized
C [ R' P'*D*P ]', getting S.
C
C ARGUMENTS
C
C Mode Parameters
C
C COND CHARACTER*1
C Specifies whether the condition of the matrix S should be
C estimated, as follows:
C = 'E' : use incremental condition estimation and store
C the numerical rank of S in RANK;
C = 'N' : do not use condition estimation, but check the
C diagonal entries of S for zero values;
C = 'U' : use the rank already stored in RANK.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix R. N >= 0.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR, N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix R.
C On exit, the full upper triangle is unaltered, and the
C strict lower triangle contains the strict upper triangle
C (transposed) of the upper triangular matrix S.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C IPVT (input) INTEGER array, dimension (N)
C This array must define the permutation matrix P such that
C A*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C DIAG (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements of the
C matrix D.
C
C QTB (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the first n elements of the
C vector Q'*b.
C
C RANK (input or output) INTEGER
C On entry, if COND = 'U', this parameter must contain the
C (numerical) rank of the matrix S.
C On exit, if COND = 'E' or 'N', this parameter contains
C the numerical rank of the matrix S, estimated according
C to the value of COND.
C
C X (output) DOUBLE PRECISION array, dimension (N)
C This array contains the least squares solution of the
C system A*x = b, D*x = 0.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If COND = 'E', the tolerance to be used for finding the
C rank of the matrix S. If the user sets TOL > 0, then the
C given value of TOL is used as a lower bound for the
C reciprocal condition number; a (sub)matrix whose
C estimated condition number is less than 1/TOL is
C considered to be of full rank. If the user sets TOL <= 0,
C then an implicitly computed, default tolerance, defined by
C TOLDEF = N*EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not relevant if COND = 'U' or 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, the first N elements of this array contain the
C diagonal elements of the upper triangular matrix S, and
C the next N elements contain the solution z.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 4*N, if COND = 'E';
C LDWORK >= 2*N, if COND <> 'E'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Standard plane rotations are used to annihilate the elements of
C the diagonal matrix D, updating the upper triangular matrix R
C and the first n elements of the vector Q'*b. A basic least squares
C solution is computed.
C
C REFERENCES
C
C [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C User's Guide for MINPACK-1.
C Applied Math. Division, Argonne National Laboratory, Argonne,
C Illinois, Report ANL-80-74, 1980.
C
C NUMERICAL ASPECTS
C 2
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C This routine is a LAPACK-based modification of QRSOLV from the
C MINPACK package [1], and with optional condition estimation.
C The option COND = 'U' is useful when dealing with several
C right-hand side vectors.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C KEYWORDS
C
C Linear system of equations, matrix operations, plane rotations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, SVLMAX
PARAMETER ( ZERO = 0.0D0, SVLMAX = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER COND
INTEGER INFO, LDR, LDWORK, N, RANK
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IPVT(*)
DOUBLE PRECISION DIAG(*), DWORK(*), QTB(*), R(LDR,*), X(*)
C .. Local Scalars ..
DOUBLE PRECISION CS, QTBPJ, SN, TEMP, TOLDEF
INTEGER I, J, K, L
LOGICAL ECOND, NCOND, UCOND
C .. Local Arrays ..
DOUBLE PRECISION DUM(3)
C .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLARTG, DROT, DSWAP, MB03OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
ECOND = LSAME( COND, 'E' )
NCOND = LSAME( COND, 'N' )
UCOND = LSAME( COND, 'U' )
INFO = 0
IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
INFO = -1
ELSEIF( N.LT.0 ) THEN
INFO = -2
ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSEIF ( UCOND .AND. ( RANK.LT.0 .OR. RANK.GT.N ) ) THEN
INFO = -8
ELSEIF ( LDWORK.LT.2*N .OR. ( ECOND .AND. LDWORK.LT.4*N ) ) THEN
INFO = -12
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB02YD', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
IF ( .NOT.UCOND )
$ RANK = 0
RETURN
END IF
C
C Copy R and Q'*b to preserve input and initialize S.
C In particular, save the diagonal elements of R in X.
C
DO 20 J = 1, N
X(J) = R(J,J)
DO 10 I = J, N
R(I,J) = R(J,I)
10 CONTINUE
20 CONTINUE
C
CALL DCOPY( N, QTB, 1, DWORK(N+1), 1 )
C
C Eliminate the diagonal matrix D using Givens rotations.
C
DO 50 J = 1, N
C
C Prepare the row of D to be eliminated, locating the
C diagonal element using P from the QR factorization.
C
L = IPVT(J)
IF ( DIAG(L).NE.ZERO ) THEN
QTBPJ = ZERO
DWORK(J) = DIAG(L)
C
DO 30 K = J + 1, N
DWORK(K) = ZERO
30 CONTINUE
C
C The transformations to eliminate the row of D modify only
C a single element of Q'*b beyond the first n, which is
C initially zero.
C
DO 40 K = J, N
C
C Determine a Givens rotation which eliminates the
C appropriate element in the current row of D.
C
IF ( DWORK(K).NE.ZERO ) THEN
C
CALL DLARTG( R(K,K), DWORK(K), CS, SN, TEMP )
C
C Compute the modified diagonal element of R and
C the modified elements of (Q'*b,0).
C Accumulate the tranformation in the row of S.
C
TEMP = CS*DWORK(N+K) + SN*QTBPJ
QTBPJ = -SN*DWORK(N+K) + CS*QTBPJ
DWORK(N+K) = TEMP
CALL DROT( N-K+1, R(K,K), 1, DWORK(K), 1, CS, SN )
C
END IF
40 CONTINUE
C
END IF
C
C Store the diagonal element of S and, if COND <> 'E', restore
C the corresponding diagonal element of R.
C
DWORK(J) = R(J,J)
IF ( .NOT.ECOND )
$ R(J,J) = X(J)
50 CONTINUE
C
C Solve the triangular system for z. If the system is singular,
C then obtain a least squares solution.
C
IF ( ECOND ) THEN
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO ) THEN
C
C Use the default tolerance in rank determination.
C
TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
END IF
C
C Interchange the strict upper and lower triangular parts of R.
C
DO 60 J = 2, N
CALL DSWAP( J-1, R(1,J), 1, R(J,1), LDR )
60 CONTINUE
C
C Estimate the reciprocal condition number of S and set the rank.
C Additional workspace: 2*N.
C
CALL MB03OD( 'No QR', N, N, R, LDR, IPVT, TOLDEF, SVLMAX,
$ DWORK, RANK, DUM, DWORK(2*N+1), LDWORK-2*N,
$ INFO )
R(1,1) = X(1)
C
C Restore the strict upper and lower triangular parts of R.
C
DO 70 J = 2, N
CALL DSWAP( J-1, R(1,J), 1, R(J,1), LDR )
R(J,J) = X(J)
70 CONTINUE
C
ELSEIF ( NCOND ) THEN
C
C Determine rank(S) by checking zero diagonal entries.
C
RANK = N
C
DO 80 J = 1, N
IF ( DWORK(J).EQ.ZERO .AND. RANK.EQ.N )
$ RANK = J - 1
80 CONTINUE
C
END IF
C
DUM(1) = ZERO
IF ( RANK.LT.N )
$ CALL DCOPY( N-RANK, DUM, 0, DWORK(N+RANK+1), 1 )
C
C Solve S*z = c using back substitution.
C
DO 100 J = RANK, 1, -1
TEMP = ZERO
C
DO 90 I = J + 1, RANK
TEMP = TEMP + R(I,J)*DWORK(N+I)
90 CONTINUE
C
DWORK(N+J) = ( DWORK(N+J) - TEMP )/DWORK(J)
100 CONTINUE
C
C Permute the components of z back to components of x.
C
DO 110 J = 1, N
L = IPVT(J)
X(L) = DWORK(N+J)
110 CONTINUE
C
RETURN
C
C *** Last line of MB02YD ***
END
|