1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
SUBROUTINE MB03MD( N, L, THETA, Q, E, Q2, E2, PIVMIN, TOL, RELTOL,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute an upper bound THETA using a bisection method such that
C the bidiagonal matrix
C
C |q(1) e(1) 0 ... 0 |
C | 0 q(2) e(2) . |
C J = | . . |
C | . e(N-1)|
C | 0 ... ... q(N) |
C
C has precisely L singular values less than or equal to THETA plus
C a given tolerance TOL.
C
C This routine is mainly intended to be called only by other SLICOT
C routines.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the bidiagonal matrix J. N >= 0.
C
C L (input/output) INTEGER
C On entry, L must contain the number of singular values
C of J which must be less than or equal to the upper bound
C computed by the routine. 0 <= L <= N.
C On exit, L may be increased if the L-th smallest singular
C value of J has multiplicity greater than 1. In this case,
C L is increased by the number of singular values of J which
C are larger than its L-th smallest one and approach the
C L-th smallest singular value of J within a distance less
C than TOL.
C If L has been increased, then the routine returns with
C IWARN set to 1.
C
C THETA (input/output) DOUBLE PRECISION
C On entry, THETA must contain an initial estimate for the
C upper bound to be computed. If THETA < 0.0 on entry, then
C one of the following default values is used.
C If L = 0, THETA is set to 0.0 irrespective of the input
C value of THETA; if L = 1, then THETA is taken as
C MIN(ABS(Q(i))), for i = 1,2,...,N; otherwise, THETA is
C taken as ABS(Q(N-L+1)).
C On exit, THETA contains the computed upper bound such that
C the bidiagonal matrix J has precisely L singular values
C less than or equal to THETA + TOL.
C
C Q (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements q(1),
C q(2),...,q(N) of the bidiagonal matrix J. That is,
C Q(i) = J(i,i) for i = 1,2,...,N.
C
C E (input) DOUBLE PRECISION array, dimension (N-1)
C This array must contain the superdiagonal elements
C e(1),e(2),...,e(N-1) of the bidiagonal matrix J. That is,
C E(k) = J(k,k+1) for k = 1,2,...,N-1.
C
C Q2 (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the squares of the diagonal
C elements q(1),q(2),...,q(N) of the bidiagonal matrix J.
C That is, Q2(i) = J(i,i)**2 for i = 1,2,...,N.
C
C E2 (input) DOUBLE PRECISION array, dimension (N-1)
C This array must contain the squares of the superdiagonal
C elements e(1),e(2),...,e(N-1) of the bidiagonal matrix J.
C That is, E2(k) = J(k,k+1)**2 for k = 1,2,...,N-1.
C
C PIVMIN (input) DOUBLE PRECISION
C The minimum absolute value of a "pivot" in the Sturm
C sequence loop.
C PIVMIN >= max( max( |q(i)|, |e(k)| )**2*sf_min, sf_min ),
C where i = 1,2,...,N, k = 1,2,...,N-1, and sf_min is at
C least the smallest number that can divide one without
C overflow (see LAPACK Library routine DLAMCH).
C Note that this condition is not checked by the routine.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C This parameter defines the multiplicity of singular values
C by considering all singular values within an interval of
C length TOL as coinciding. TOL is used in checking how many
C singular values are less than or equal to THETA. Also in
C computing an appropriate upper bound THETA by a bisection
C method, TOL is used as a stopping criterion defining the
C minimum (absolute) subinterval width. TOL >= 0.
C
C RELTOL DOUBLE PRECISION
C This parameter specifies the minimum relative width of an
C interval. When an interval is narrower than TOL, or than
C RELTOL times the larger (in magnitude) endpoint, then it
C is considered to be sufficiently small and bisection has
C converged.
C RELTOL >= BASE * EPS, where BASE is machine radix and EPS
C is machine precision (see LAPACK Library routine DLAMCH).
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warnings;
C = 1: if the value of L has been increased as the L-th
C smallest singular value of J coincides with the
C (L+1)-th smallest one.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Let s(i), i = 1,2,...,N, be the N non-negative singular values of
C the bidiagonal matrix J arranged so that s(1) >= ... >= s(N) >= 0.
C The routine then computes an upper bound T such that s(N-L) > T >=
C s(N-L+1) as follows (see [2]).
C First, if the initial estimate of THETA is not specified by the
C user then the routine initialises THETA to be an estimate which
C is close to the requested value of THETA if s(N-L) >> s(N-L+1).
C Second, a bisection method (see [1, 8.5]) is used which generates
C a sequence of shrinking intervals [Y,Z] such that either THETA in
C [Y,Z] was found (so that J has L singular values less than or
C equal to THETA), or
C
C (number of s(i) <= Y) < L < (number of s(i) <= Z).
C
C This bisection method is applied to an associated 2N-by-2N
C symmetric tridiagonal matrix T" whose eigenvalues (see [1]) are
C given by s(1),s(2),...,s(N),-s(1),-s(2),...,-s(N). One of the
C starting values for the bisection method is the initial value of
C THETA. If this value is an upper bound, then the initial lower
C bound is set to zero, else the initial upper bound is computed
C from the Gershgorin Circle Theorem [1, Theorem 7.2-1], applied to
C T". The computation of the "number of s(i) <= Y (or Z)" is
C achieved by calling SLICOT Library routine MB03ND, which applies
C Sylvester's Law of Inertia or equivalently Sturm sequences
C [1, 8.5] to the associated matrix T". If
C
C Z - Y <= MAX( TOL, PIVMIN, RELTOL*MAX( ABS( Y ), ABS( Z ) ) )
C
C at some stage of the bisection method, then at least two singular
C values of J lie in the interval [Y,Z] within a distance less than
C TOL from each other. In this case, s(N-L) and s(N-L+1) are assumed
C to coincide, the upper bound T is set to the value of Z, the value
C of L is increased and IWARN is set to 1.
C
C REFERENCES
C
C [1] Golub, G.H. and Van Loan, C.F.
C Matrix Computations.
C The Johns Hopkins University Press, Baltimore, Maryland, 1983.
C
C [2] Van Huffel, S. and Vandewalle, J.
C The Partial Total Least Squares Algorithm.
C J. Comput. and Appl. Math., 21, pp. 333-341, 1988.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C Supersedes Release 2.0 routine MB03AD by S. Van Huffel, Katholieke
C University, Leuven, Belgium.
C
C REVISIONS
C
C June 16, 1997, Oct. 26, 2003.
C
C KEYWORDS
C
C Bidiagonal matrix, singular values.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, TWO
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0 )
DOUBLE PRECISION FUDGE
PARAMETER ( FUDGE = TWO )
C .. Scalar Arguments ..
INTEGER INFO, IWARN, L, N
DOUBLE PRECISION PIVMIN, RELTOL, THETA, TOL
C .. Array Arguments ..
DOUBLE PRECISION E(*), E2(*), Q(*), Q2(*)
C .. Local Scalars ..
INTEGER I, NUM, NUMZ
DOUBLE PRECISION H, TH, Y, Z
C .. External Functions ..
INTEGER MB03ND
DOUBLE PRECISION DLAMCH, MB03MY
EXTERNAL DLAMCH, MB03MY, MB03ND
C .. External Subroutines ..
EXTERNAL XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX
C .. Executable Statements ..
C
C Test some input scalar arguments.
C
IWARN = 0
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( L.LT.0 .OR. L.GT.N ) THEN
INFO = -2
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB03MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
C Step 1: initialisation of THETA.
C -----------------------
IF ( L.EQ.0 ) THETA = ZERO
IF ( THETA.LT.ZERO ) THEN
IF ( L.EQ.1 ) THEN
C
C An upper bound which is close if S(N-1) >> S(N):
C
THETA = MB03MY( N, Q, 1 )
IF ( N.EQ.1 )
$ RETURN
ELSE
C
C An experimentally established estimate which is good if
C S(N-L) >> S(N-L+1):
C
THETA = ABS( Q(N-L+1) )
END IF
END IF
C
C Step 2: Check quality of initial estimate THETA.
C ---------------------------------------
NUM = MB03ND( N, THETA, Q2, E2, PIVMIN, INFO )
IF ( NUM.EQ.L )
$ RETURN
C
C Step 3: initialisation starting values for bisection method.
C ---------------------------------------------------
C Let S(i), i=1,...,N, be the singular values of J in decreasing
C order. Then, the computed Y and Z will be such that
C (number of S(i) <= Y) < L < (number of S(i) <= Z).
C
IF ( NUM.LT.L ) THEN
TH = ABS( Q(1) )
Z = ZERO
Y = THETA
NUMZ = N
C
DO 20 I = 1, N - 1
H = ABS( Q(I+1) )
Z = MAX( MAX( TH, H ) + ABS( E(I) ), Z )
TH = H
20 CONTINUE
C
C Widen the Gershgorin interval a bit for machines with sloppy
C arithmetic.
C
Z = Z + FUDGE*ABS( Z )*DLAMCH( 'Epsilon' )*DBLE( N )
$ + FUDGE*PIVMIN
ELSE
Z = THETA
Y = ZERO
NUMZ = NUM
END IF
C
C Step 4: Bisection method for finding the upper bound on the L
C smallest singular values of the bidiagonal.
C ------------------------------------------
C A sequence of subintervals [Y,Z] is produced such that
C (number of S(i) <= Y) < L < (number of S(i) <= Z).
C NUM : number of S(i) <= TH,
C NUMZ: number of S(i) <= Z.
C
C WHILE ( ( NUM .NE. L ) .AND.
C ( ( Z-Y ) .GT. MAX( TOL, PIVMIN, RELTOL*ABS( Z ) ) ) ) DO
40 IF ( ( NUM.NE.L ) .AND.
$ ( ABS( Z-Y ).GT.MAX( TOL, PIVMIN,
$ RELTOL*MAX( ABS( Y ), ABS( Z ) ) ) ) )
$ THEN
TH = ( Y + Z )/TWO
NUM = MB03ND( N, TH, Q2, E2, PIVMIN, INFO )
IF ( NUM.LT.L ) THEN
Y = TH
ELSE
Z = TH
NUMZ = NUM
END IF
GO TO 40
END IF
C END WHILE 40
C
C If NUM <> L and ( Z - Y ) <= TOL, then at least two singular
C values of J lie in the interval [Y,Z] within a distance less than
C TOL from each other. S(N-L) and S(N-L+1) are then assumed to
C coincide. L is increased, and a warning is given.
C
IF ( NUM.NE.L ) THEN
L = NUMZ
THETA = Z
IWARN = 1
ELSE
THETA = TH
END IF
C
RETURN
C *** Last line of MB03MD ***
END
|