1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
SUBROUTINE MB03OY( M, N, A, LDA, RCOND, SVLMAX, RANK, SVAL, JPVT,
$ TAU, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a rank-revealing QR factorization of a real general
C M-by-N matrix A, which may be rank-deficient, and estimate its
C effective rank using incremental condition estimation.
C
C The routine uses a truncated QR factorization with column pivoting
C [ R11 R12 ]
C A * P = Q * R, where R = [ ],
C [ 0 R22 ]
C with R11 defined as the largest leading upper triangular submatrix
C whose estimated condition number is less than 1/RCOND. The order
C of R11, RANK, is the effective rank of A. Condition estimation is
C performed during the QR factorization process. Matrix R22 is full
C (but of small norm), or empty.
C
C MB03OY does not perform any scaling of the matrix A.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension
C ( LDA, N )
C On entry, the leading M-by-N part of this array must
C contain the given matrix A.
C On exit, the leading RANK-by-RANK upper triangular part
C of A contains the triangular factor R11, and the elements
C below the diagonal in the first RANK columns, with the
C array TAU, represent the orthogonal matrix Q as a product
C of RANK elementary reflectors.
C The remaining N-RANK columns contain the result of the
C QR factorization process used.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C RCOND (input) DOUBLE PRECISION
C RCOND is used to determine the effective rank of A, which
C is defined as the order of the largest leading triangular
C submatrix R11 in the QR factorization with pivoting of A,
C whose estimated condition number is less than 1/RCOND.
C 0 <= RCOND <= 1.
C NOTE that when SVLMAX > 0, the estimated rank could be
C less than that defined above (see SVLMAX).
C
C SVLMAX (input) DOUBLE PRECISION
C If A is a submatrix of another matrix B, and the rank
C decision should be related to that matrix, then SVLMAX
C should be an estimate of the largest singular value of B
C (for instance, the Frobenius norm of B). If this is not
C the case, the input value SVLMAX = 0 should work.
C SVLMAX >= 0.
C
C RANK (output) INTEGER
C The effective (estimated) rank of A, i.e., the order of
C the submatrix R11.
C
C SVAL (output) DOUBLE PRECISION array, dimension ( 3 )
C The estimates of some of the singular values of the
C triangular factor R:
C SVAL(1): largest singular value of R(1:RANK,1:RANK);
C SVAL(2): smallest singular value of R(1:RANK,1:RANK);
C SVAL(3): smallest singular value of R(1:RANK+1,1:RANK+1),
C if RANK < MIN( M, N ), or of R(1:RANK,1:RANK),
C otherwise.
C If the triangular factorization is a rank-revealing one
C (which will be the case if the leading columns were well-
C conditioned), then SVAL(1) will also be an estimate for
C the largest singular value of A, and SVAL(2) and SVAL(3)
C will be estimates for the RANK-th and (RANK+1)-st singular
C values of A, respectively.
C By examining these values, one can confirm that the rank
C is well defined with respect to the chosen value of RCOND.
C The ratio SVAL(1)/SVAL(2) is an estimate of the condition
C number of R(1:RANK,1:RANK).
C
C JPVT (output) INTEGER array, dimension ( N )
C If JPVT(i) = k, then the i-th column of A*P was the k-th
C column of A.
C
C TAU (output) DOUBLE PRECISION array, dimension ( MIN( M, N ) )
C The leading RANK elements of TAU contain the scalar
C factors of the elementary reflectors.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension ( 3*N-1 )
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine computes a truncated QR factorization with column
C pivoting of A, A * P = Q * R, with R defined above, and,
C during this process, finds the largest leading submatrix whose
C estimated condition number is less than 1/RCOND, taking the
C possible positive value of SVLMAX into account. This is performed
C using the LAPACK incremental condition estimation scheme and a
C slightly modified rank decision test. The factorization process
C stops when RANK has been determined.
C
C The matrix Q is represented as a product of elementary reflectors
C
C Q = H(1) H(2) . . . H(k), where k = rank <= min(m,n).
C
C Each H(i) has the form
C
C H = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
C A(i+1:m,i), and tau in TAU(i).
C
C The matrix P is represented in jpvt as follows: If
C jpvt(j) = i
C then the jth column of P is the ith canonical unit vector.
C
C REFERENCES
C
C [1] Bischof, C.H. and P. Tang.
C Generalizing Incremental Condition Estimation.
C LAPACK Working Notes 32, Mathematics and Computer Science
C Division, Argonne National Laboratory, UT, CS-91-132,
C May 1991.
C
C [2] Bischof, C.H. and P. Tang.
C Robust Incremental Condition Estimation.
C LAPACK Working Notes 33, Mathematics and Computer Science
C Division, Argonne National Laboratory, UT, CS-91-133,
C May 1991.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Jan. 2009.
C
C KEYWORDS
C
C Eigenvalue problem, matrix operations, orthogonal transformation,
C singular values.
C
C ******************************************************************
C
C .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ZERO, ONE, P05
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, P05 = 0.05D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, RANK
DOUBLE PRECISION RCOND, SVLMAX
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), DWORK( * ), SVAL( 3 ), TAU( * )
C ..
C .. Local Scalars ..
INTEGER I, ISMAX, ISMIN, ITEMP, J, MN, PVT
DOUBLE PRECISION AII, C1, C2, S1, S2, SMAX, SMAXPR, SMIN,
$ SMINPR, TEMP, TEMP2
C ..
C .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DNRM2
EXTERNAL DNRM2, IDAMAX
C .. External Subroutines ..
EXTERNAL DLAIC1, DLARF, DLARFG, DSCAL, DSWAP, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( RCOND.LT.ZERO .OR. RCOND.GT.ONE ) THEN
INFO = -5
ELSE IF( SVLMAX.LT.ZERO ) THEN
INFO = -6
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03OY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
MN = MIN( M, N )
IF( MN.EQ.0 ) THEN
RANK = 0
SVAL( 1 ) = ZERO
SVAL( 2 ) = ZERO
SVAL( 3 ) = ZERO
RETURN
END IF
C
ISMIN = 1
ISMAX = ISMIN + N
C
C Initialize partial column norms and pivoting vector. The first n
C elements of DWORK store the exact column norms. The already used
C leading part is then overwritten by the condition estimator.
C
DO 10 I = 1, N
DWORK( I ) = DNRM2( M, A( 1, I ), 1 )
DWORK( N+I ) = DWORK( I )
JPVT( I ) = I
10 CONTINUE
C
C Compute factorization and determine RANK using incremental
C condition estimation.
C
RANK = 0
C
20 CONTINUE
IF( RANK.LT.MN ) THEN
I = RANK + 1
C
C Determine ith pivot column and swap if necessary.
C
PVT = ( I-1 ) + IDAMAX( N-I+1, DWORK( I ), 1 )
C
IF( PVT.NE.I ) THEN
CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
ITEMP = JPVT( PVT )
JPVT( PVT ) = JPVT( I )
JPVT( I ) = ITEMP
DWORK( PVT ) = DWORK( I )
DWORK( N+PVT ) = DWORK( N+I )
END IF
C
C Save A(I,I) and generate elementary reflector H(i).
C
IF( I.LT.M ) THEN
AII = A( I, I )
CALL DLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) )
ELSE
TAU( M ) = ZERO
END IF
C
IF( RANK.EQ.0 ) THEN
C
C Initialize; exit if matrix is zero (RANK = 0).
C
SMAX = ABS( A( 1, 1 ) )
IF ( SMAX.EQ.ZERO ) THEN
SVAL( 1 ) = ZERO
SVAL( 2 ) = ZERO
SVAL( 3 ) = ZERO
RETURN
END IF
SMIN = SMAX
SMAXPR = SMAX
SMINPR = SMIN
C1 = ONE
C2 = ONE
ELSE
C
C One step of incremental condition estimation.
C
CALL DLAIC1( IMIN, RANK, DWORK( ISMIN ), SMIN, A( 1, I ),
$ A( I, I ), SMINPR, S1, C1 )
CALL DLAIC1( IMAX, RANK, DWORK( ISMAX ), SMAX, A( 1, I ),
$ A( I, I ), SMAXPR, S2, C2 )
END IF
C
IF( SVLMAX*RCOND.LE.SMAXPR ) THEN
IF( SVLMAX*RCOND.LE.SMINPR ) THEN
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
C
C Continue factorization, as rank is at least RANK.
C
IF( I.LT.N ) THEN
C
C Apply H(i) to A(i:m,i+1:n) from the left.
C
AII = A( I, I )
A( I, I ) = ONE
CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
$ TAU( I ), A( I, I+1 ), LDA,
$ DWORK( 2*N+1 ) )
A( I, I ) = AII
END IF
C
C Update partial column norms.
C
DO 30 J = I + 1, N
IF( DWORK( J ).NE.ZERO ) THEN
TEMP = ONE -
$ ( ABS( A( I, J ) ) / DWORK( J ) )**2
TEMP = MAX( TEMP, ZERO )
TEMP2 = ONE + P05*TEMP*
$ ( DWORK( J ) / DWORK( N+J ) )**2
IF( TEMP2.EQ.ONE ) THEN
IF( M-I.GT.0 ) THEN
DWORK( J ) = DNRM2( M-I, A( I+1, J ), 1 )
DWORK( N+J ) = DWORK( J )
ELSE
DWORK( J ) = ZERO
DWORK( N+J ) = ZERO
END IF
ELSE
DWORK( J ) = DWORK( J )*SQRT( TEMP )
END IF
END IF
30 CONTINUE
C
DO 40 I = 1, RANK
DWORK( ISMIN+I-1 ) = S1*DWORK( ISMIN+I-1 )
DWORK( ISMAX+I-1 ) = S2*DWORK( ISMAX+I-1 )
40 CONTINUE
C
DWORK( ISMIN+RANK ) = C1
DWORK( ISMAX+RANK ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 20
END IF
END IF
END IF
END IF
C
C Restore the changed part of the (RANK+1)-th column and set SVAL.
C
IF ( RANK.LT.N ) THEN
IF ( I.LT.M ) THEN
CALL DSCAL( M-I, -A( I, I )*TAU( I ), A( I+1, I ), 1 )
A( I, I ) = AII
END IF
END IF
IF ( RANK.EQ.0 ) THEN
SMIN = ZERO
SMINPR = ZERO
END IF
SVAL( 1 ) = SMAX
SVAL( 2 ) = SMIN
SVAL( 3 ) = SMINPR
C
RETURN
C *** Last line of MB03OY ***
END
|