1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
SUBROUTINE MB03PD( JOBRQ, M, N, A, LDA, JPVT, RCOND, SVLMAX, TAU,
$ RANK, SVAL, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute (optionally) a rank-revealing RQ factorization of a
C real general M-by-N matrix A, which may be rank-deficient,
C and estimate its effective rank using incremental condition
C estimation.
C
C The routine uses an RQ factorization with row pivoting:
C P * A = R * Q, where R = [ R11 R12 ],
C [ 0 R22 ]
C with R22 defined as the largest trailing submatrix whose estimated
C condition number is less than 1/RCOND. The order of R22, RANK,
C is the effective rank of A.
C
C MB03PD does not perform any scaling of the matrix A.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBRQ CHARACTER*1
C = 'R': Perform an RQ factorization with row pivoting;
C = 'N': Do not perform the RQ factorization (but assume
C that it has been done outside).
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension
C ( LDA, N )
C On entry with JOBRQ = 'R', the leading M-by-N part of this
C array must contain the given matrix A.
C On exit with JOBRQ = 'R',
C if M <= N, the upper triangle of the subarray
C A(1:M,N-M+1:N) contains the M-by-M upper triangular
C matrix R;
C if M >= N, the elements on and above the (M-N)-th
C subdiagonal contain the M-by-N upper trapezoidal matrix R;
C the remaining elements, with the array TAU, represent the
C orthogonal matrix Q as a product of min(M,N) elementary
C reflectors (see METHOD).
C On entry and on exit with JOBRQ = 'N',
C if M <= N, the upper triangle of the subarray
C A(1:M,N-M+1:N) must contain the M-by-M upper triangular
C matrix R;
C if M >= N, the elements on and above the (M-N)-th
C subdiagonal must contain the M-by-N upper trapezoidal
C matrix R;
C the remaining elements are not referenced.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C JPVT (input/output) INTEGER array, dimension ( M )
C On entry with JOBRQ = 'R', if JPVT(i) <> 0, the i-th row
C of A is a final row, otherwise it is a free row. Before
C the RQ factorization of A, all final rows are permuted
C to the trailing positions; only the remaining free rows
C are moved as a result of row pivoting during the
C factorization. For rank determination it is preferable
C that all rows be free.
C On exit with JOBRQ = 'R', if JPVT(i) = k, then the i-th
C row of P*A was the k-th row of A.
C Array JPVT is not referenced when JOBRQ = 'N'.
C
C RCOND (input) DOUBLE PRECISION
C RCOND is used to determine the effective rank of A, which
C is defined as the order of the largest trailing triangular
C submatrix R22 in the RQ factorization with pivoting of A,
C whose estimated condition number is less than 1/RCOND.
C RCOND >= 0.
C NOTE that when SVLMAX > 0, the estimated rank could be
C less than that defined above (see SVLMAX).
C
C SVLMAX (input) DOUBLE PRECISION
C If A is a submatrix of another matrix B, and the rank
C decision should be related to that matrix, then SVLMAX
C should be an estimate of the largest singular value of B
C (for instance, the Frobenius norm of B). If this is not
C the case, the input value SVLMAX = 0 should work.
C SVLMAX >= 0.
C
C TAU (output) DOUBLE PRECISION array, dimension ( MIN( M, N ) )
C On exit with JOBRQ = 'R', the leading min(M,N) elements of
C TAU contain the scalar factors of the elementary
C reflectors.
C Array TAU is not referenced when JOBRQ = 'N'.
C
C RANK (output) INTEGER
C The effective (estimated) rank of A, i.e. the order of
C the submatrix R22.
C
C SVAL (output) DOUBLE PRECISION array, dimension ( 3 )
C The estimates of some of the singular values of the
C triangular factor R:
C SVAL(1): largest singular value of
C R(M-RANK+1:M,N-RANK+1:N);
C SVAL(2): smallest singular value of
C R(M-RANK+1:M,N-RANK+1:N);
C SVAL(3): smallest singular value of R(M-RANK:M,N-RANK:N),
C if RANK < MIN( M, N ), or of
C R(M-RANK+1:M,N-RANK+1:N), otherwise.
C If the triangular factorization is a rank-revealing one
C (which will be the case if the trailing rows were well-
C conditioned), then SVAL(1) will also be an estimate for
C the largest singular value of A, and SVAL(2) and SVAL(3)
C will be estimates for the RANK-th and (RANK+1)-st singular
C values of A, respectively.
C By examining these values, one can confirm that the rank
C is well defined with respect to the chosen value of RCOND.
C The ratio SVAL(1)/SVAL(2) is an estimate of the condition
C number of R(M-RANK+1:M,N-RANK+1:N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension ( LDWORK )
C where LDWORK = max( 1, 3*M ), if JOBRQ = 'R';
C LDWORK = max( 1, 3*min( M, N ) ), if JOBRQ = 'N'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine computes or uses an RQ factorization with row
C pivoting of A, P * A = R * Q, with R defined above, and then
C finds the largest trailing submatrix whose estimated condition
C number is less than 1/RCOND, taking the possible positive value of
C SVLMAX into account. This is performed using an adaptation of the
C LAPACK incremental condition estimation scheme and a slightly
C modified rank decision test.
C
C The matrix Q is represented as a product of elementary reflectors
C
C Q = H(1) H(2) . . . H(k), where k = min(m,n).
C
C Each H(i) has the form
C
C H = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
C in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
C
C The matrix P is represented in jpvt as follows: If
C jpvt(j) = i
C then the jth row of P is the ith canonical unit vector.
C
C REFERENCES
C
C [1] Bischof, C.H. and P. Tang.
C Generalizing Incremental Condition Estimation.
C LAPACK Working Notes 32, Mathematics and Computer Science
C Division, Argonne National Laboratory, UT, CS-91-132,
C May 1991.
C
C [2] Bischof, C.H. and P. Tang.
C Robust Incremental Condition Estimation.
C LAPACK Working Notes 33, Mathematics and Computer Science
C Division, Argonne National Laboratory, UT, CS-91-133,
C May 1991.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C
C REVISIONS
C
C Nov. 1997
C
C KEYWORDS
C
C Eigenvalue problem, matrix operations, orthogonal transformation,
C singular values.
C
C ******************************************************************
C
C .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBRQ
INTEGER INFO, LDA, M, N, RANK
DOUBLE PRECISION RCOND, SVLMAX
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), SVAL( 3 ), TAU( * ), DWORK( * )
C .. Local Scalars ..
LOGICAL LJOBRQ
INTEGER I, ISMAX, ISMIN, JWORK, MN
DOUBLE PRECISION C1, C2, S1, S2, SMAX, SMAXPR, SMIN, SMINPR
C ..
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLAIC1, MB04GD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
C ..
C .. Executable Statements ..
C
LJOBRQ = LSAME( JOBRQ, 'R' )
MN = MIN( M, N )
C
C Test the input scalar arguments.
C
INFO = 0
IF( .NOT.LJOBRQ .AND. .NOT.LSAME( JOBRQ, 'N' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( RCOND.LT.ZERO ) THEN
INFO = -7
ELSE IF( SVLMAX.LT.ZERO ) THEN
INFO = -8
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03PD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MN.EQ.0 ) THEN
RANK = 0
SVAL( 1 ) = ZERO
SVAL( 2 ) = ZERO
SVAL( 3 ) = ZERO
RETURN
END IF
C
IF ( LJOBRQ ) THEN
C
C Compute RQ factorization with row pivoting of A:
C P * A = R * Q
C Workspace 3*M. Details of Householder rotations stored in TAU.
C
CALL MB04GD( M, N, A, LDA, JPVT, TAU, DWORK( 1 ), INFO )
END IF
C
C Determine RANK using incremental condition estimation.
C Workspace 3*min(M,N).
C
SMAX = ABS( A( M, N ) )
IF( SMAX.EQ.ZERO .OR. SVLMAX*RCOND.GT.SMAX ) THEN
RANK = 0
SVAL( 1 ) = SMAX
SVAL( 2 ) = ZERO
SVAL( 3 ) = ZERO
ELSE
ISMIN = MN
ISMAX = 2*MN
JWORK = ISMAX + 1
DWORK( ISMIN ) = ONE
DWORK( ISMAX ) = ONE
RANK = 1
SMIN = SMAX
SMINPR = SMIN
C
10 CONTINUE
IF( RANK.LT.MN ) THEN
CALL DCOPY ( RANK, A( M-RANK, N-RANK+1 ), LDA,
$ DWORK( JWORK ), 1 )
CALL DLAIC1( IMIN, RANK, DWORK( ISMIN ), SMIN,
$ DWORK( JWORK ), A( M-RANK, N-RANK ), SMINPR,
$ S1, C1 )
CALL DLAIC1( IMAX, RANK, DWORK( ISMAX ), SMAX,
$ DWORK( JWORK ), A( M-RANK, N-RANK ), SMAXPR,
$ S2, C2 )
C
IF( SVLMAX*RCOND.LE.SMAXPR ) THEN
IF( SVLMAX*RCOND.LE.SMINPR ) THEN
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
DO 20 I = 1, RANK
DWORK( ISMIN+I-1 ) = S1*DWORK( ISMIN+I-1 )
DWORK( ISMAX+I-1 ) = S2*DWORK( ISMAX+I-1 )
20 CONTINUE
ISMIN = ISMIN - 1
ISMAX = ISMAX - 1
DWORK( ISMIN ) = C1
DWORK( ISMAX ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 10
END IF
END IF
END IF
END IF
SVAL( 1 ) = SMAX
SVAL( 2 ) = SMIN
SVAL( 3 ) = SMINPR
END IF
C
RETURN
C *** Last line of MB03PD ***
END
|