1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
SUBROUTINE MB03QD( DICO, STDOM, JOBU, N, NLOW, NSUP, ALPHA,
$ A, LDA, U, LDU, NDIM, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reorder the diagonal blocks of a principal submatrix of an
C upper quasi-triangular matrix A together with their eigenvalues by
C constructing an orthogonal similarity transformation UT.
C After reordering, the leading block of the selected submatrix of A
C has eigenvalues in a suitably defined domain of interest, usually
C related to stability/instability in a continuous- or discrete-time
C sense.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the spectrum separation to be
C performed as follows:
C = 'C': continuous-time sense;
C = 'D': discrete-time sense.
C
C STDOM CHARACTER*1
C Specifies whether the domain of interest is of stability
C type (left part of complex plane or inside of a circle)
C or of instability type (right part of complex plane or
C outside of a circle) as follows:
C = 'S': stability type domain;
C = 'U': instability type domain.
C
C JOBU CHARACTER*1
C Indicates how the performed orthogonal transformations UT
C are accumulated, as follows:
C = 'I': U is initialized to the unit matrix and the matrix
C UT is returned in U;
C = 'U': the given matrix U is updated and the matrix U*UT
C is returned in U.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and U. N >= 1.
C
C NLOW, (input) INTEGER
C NSUP NLOW and NSUP specify the boundary indices for the rows
C and columns of the principal submatrix of A whose diagonal
C blocks are to be reordered. 1 <= NLOW <= NSUP <= N.
C
C ALPHA (input) DOUBLE PRECISION
C The boundary of the domain of interest for the eigenvalues
C of A. If DICO = 'C', ALPHA is the boundary value for the
C real parts of eigenvalues, while for DICO = 'D',
C ALPHA >= 0 represents the boundary value for the moduli of
C eigenvalues.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain a matrix in a real Schur form whose 1-by-1 and
C 2-by-2 diagonal blocks between positions NLOW and NSUP
C are to be reordered.
C On exit, the leading N-by-N part contains the ordered
C real Schur matrix UT' * A * UT with the elements below the
C first subdiagonal set to zero.
C The leading NDIM-by-NDIM part of the principal submatrix
C D = A(NLOW:NSUP,NLOW:NSUP) has eigenvalues in the domain
C of interest and the trailing part of this submatrix has
C eigenvalues outside the domain of interest.
C The domain of interest for lambda(D), the eigenvalues of
C D, is defined by the parameters ALPHA, DICO and STDOM as
C follows:
C For DICO = 'C':
C Real(lambda(D)) < ALPHA if STDOM = 'S';
C Real(lambda(D)) > ALPHA if STDOM = 'U'.
C For DICO = 'D':
C Abs(lambda(D)) < ALPHA if STDOM = 'S';
C Abs(lambda(D)) > ALPHA if STDOM = 'U'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C On entry with JOBU = 'U', the leading N-by-N part of this
C array must contain a transformation matrix (e.g. from a
C previous call to this routine).
C On exit, if JOBU = 'U', the leading N-by-N part of this
C array contains the product of the input matrix U and the
C orthogonal matrix UT used to reorder the diagonal blocks
C of A.
C On exit, if JOBU = 'I', the leading N-by-N part of this
C array contains the matrix UT of the performed orthogonal
C transformations.
C Array U need not be set on entry if JOBU = 'I'.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= N.
C
C NDIM (output) INTEGER
C The number of eigenvalues of the selected principal
C submatrix lying inside the domain of interest.
C If NLOW = 1, NDIM is also the dimension of the invariant
C subspace corresponding to the eigenvalues of the leading
C NDIM-by-NDIM submatrix. In this case, if U is the
C orthogonal transformation matrix used to compute and
C reorder the real Schur form of A, its first NDIM columns
C form an orthonormal basis for the above invariant
C subspace.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: A(NLOW,NLOW-1) is nonzero, i.e. A(NLOW,NLOW) is not
C the leading element of a 1-by-1 or 2-by-2 diagonal
C block of A, or A(NSUP+1,NSUP) is nonzero, i.e.
C A(NSUP,NSUP) is not the bottom element of a 1-by-1
C or 2-by-2 diagonal block of A;
C = 2: two adjacent blocks are too close to swap (the
C problem is very ill-conditioned).
C
C METHOD
C
C Given an upper quasi-triangular matrix A with 1-by-1 or 2-by-2
C diagonal blocks, the routine reorders its diagonal blocks along
C with its eigenvalues by performing an orthogonal similarity
C transformation UT' * A * UT. The column transformation UT is also
C performed on the given (initial) transformation U (resulted from
C a possible previous step or initialized as the identity matrix).
C After reordering, the eigenvalues inside the region specified by
C the parameters ALPHA, DICO and STDOM appear at the top of
C the selected diagonal block between positions NLOW and NSUP.
C In other words, lambda(A(NLOW:NSUP,NLOW:NSUP)) are ordered such
C that lambda(A(NLOW:NLOW+NDIM-1,NLOW:NLOW+NDIM-1)) are inside and
C lambda(A(NLOW+NDIM:NSUP,NLOW+NDIM:NSUP)) are outside the domain
C of interest. If NLOW = 1, the first NDIM columns of U*UT span the
C corresponding invariant subspace of A.
C
C REFERENCES
C
C [1] Stewart, G.W.
C HQR3 and EXCHQZ: FORTRAN subroutines for calculating and
C ordering the eigenvalues of a real upper Hessenberg matrix.
C ACM TOMS, 2, pp. 275-280, 1976.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires less than 4*N operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C April 1998. Based on the RASP routine SEOR1.
C
C KEYWORDS
C
C Eigenvalues, invariant subspace, orthogonal transformation, real
C Schur form, similarity transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBU, STDOM
INTEGER INFO, LDA, LDU, N, NDIM, NLOW, NSUP
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), U(LDU,*)
C .. Local Scalars ..
LOGICAL DISCR, LSTDOM
INTEGER IB, L, LM1, NUP
DOUBLE PRECISION E1, E2, TLAMBD
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAPY2
EXTERNAL DLAPY2, LSAME
C .. External Subroutines ..
EXTERNAL DLASET, DTREXC, MB03QY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS
C .. Executable Statements ..
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
LSTDOM = LSAME( STDOM, 'S' )
C
C Check input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSTDOM .OR. LSAME( STDOM, 'U' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( LSAME( JOBU, 'I' ) .OR.
$ LSAME( JOBU, 'U' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.1 ) THEN
INFO = -4
ELSE IF( NLOW.LT.1 ) THEN
INFO = -5
ELSE IF( NLOW.GT.NSUP .OR. NSUP.GT.N ) THEN
INFO = -6
ELSE IF( DISCR .AND. ALPHA.LT.ZERO ) THEN
INFO = -7
ELSE IF( LDA.LT.N ) THEN
INFO = -9
ELSE IF( LDU.LT.N ) THEN
INFO = -11
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB03QD', -INFO )
RETURN
END IF
C
IF( NLOW.GT.1 ) THEN
IF( A(NLOW,NLOW-1).NE.ZERO ) INFO = 1
END IF
IF( NSUP.LT.N ) THEN
IF( A(NSUP+1,NSUP).NE.ZERO ) INFO = 1
END IF
IF( INFO.NE.0 )
$ RETURN
C
C Initialize U with an identity matrix if necessary.
C
IF( LSAME( JOBU, 'I' ) )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
C
NDIM = 0
L = NSUP
NUP = NSUP
C
C NUP is the minimal value such that the submatrix A(i,j) with
C NUP+1 <= i,j <= NSUP contains no eigenvalues inside the domain of
C interest. L is such that all the eigenvalues of the submatrix
C A(i,j) with L+1 <= i,j <= NUP lie inside the domain of interest.
C
C WHILE( L >= NLOW ) DO
C
10 IF( L.GE.NLOW ) THEN
IB = 1
IF( L.GT.NLOW ) THEN
LM1 = L - 1
IF( A(L,LM1).NE.ZERO ) THEN
CALL MB03QY( N, LM1, A, LDA, U, LDU, E1, E2, INFO )
IF( A(L,LM1).NE.ZERO ) IB = 2
END IF
END IF
IF( DISCR ) THEN
IF( IB.EQ.1 ) THEN
TLAMBD = ABS( A(L,L) )
ELSE
TLAMBD = DLAPY2( E1, E2 )
END IF
ELSE
IF( IB.EQ.1 ) THEN
TLAMBD = A(L,L)
ELSE
TLAMBD = E1
END IF
END IF
IF( ( LSTDOM .AND. TLAMBD.LT.ALPHA ) .OR.
$ ( .NOT.LSTDOM .AND. TLAMBD.GT.ALPHA ) ) THEN
NDIM = NDIM + IB
L = L - IB
ELSE
IF( NDIM.NE.0 ) THEN
CALL DTREXC( 'V', N, A, LDA, U, LDU, L, NUP, DWORK,
$ INFO )
IF( INFO.NE.0 ) THEN
INFO = 2
RETURN
END IF
NUP = NUP - 1
L = L - 1
ELSE
NUP = NUP - IB
L = L - IB
END IF
END IF
GO TO 10
END IF
C
C END WHILE 10
C
RETURN
C *** Last line of MB03QD ***
END
|