File: MB03QY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (164 lines) | stat: -rw-r--r-- 5,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
      SUBROUTINE MB03QY( N, L, A, LDA, U, LDU, E1, E2, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the eigenvalues of a selected 2-by-2 diagonal block
C     of an upper quasi-triangular matrix, to reduce the selected block
C     to the standard form and to split the block in the case of real
C     eigenvalues by constructing an orthogonal transformation UT.
C     This transformation is applied to A (by similarity) and to
C     another matrix U from the right.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and UT.  N >= 2.
C
C     L       (input) INTEGER
C             Specifies the position of the block.  1 <= L < N.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper quasi-triangular matrix A whose
C             selected 2-by-2 diagonal block is to be processed.
C             On exit, the leading N-by-N part of this array contains
C             the upper quasi-triangular matrix A after its selected
C             block has been splitt and/or put in the LAPACK standard
C             form.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= N.
C
C     U       (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C             On entry, the leading N-by-N part of this array must
C             contain a transformation matrix U.
C             On exit, the leading N-by-N part of this array contains
C             U*UT, where UT is the transformation matrix used to
C             split and/or standardize the selected block.
C
C     LDU     INTEGER
C             The leading dimension of array U.  LDU >= N.
C
C     E1, E2  (output) DOUBLE PRECISION
C             E1 and E2 contain either the real eigenvalues or the real
C             and positive imaginary parts, respectively, of the complex
C             eigenvalues of the selected 2-by-2 diagonal block of A.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Let A1 = ( A(L,L)    A(L,L+1)   )
C              ( A(L+1,L)  A(L+1,L+1) )
C     be the specified 2-by-2 diagonal block of matrix A.
C     If the eigenvalues of A1 are complex, then they are computed and
C     stored in E1 and E2, where the real part is stored in E1 and the
C     positive imaginary part in E2. The 2-by-2 block is reduced if
C     necessary to the standard form, such that A(L,L) = A(L+1,L+1), and
C     A(L,L+1) and A(L+1,L) have oposite signs. If the eigenvalues are
C     real, the 2-by-2 block is reduced to an upper triangular form such
C     that ABS(A(L,L)) >= ABS(A(L+1,L+1)).
C     In both cases, an orthogonal rotation U1' is constructed such that
C     U1'*A1*U1 has the appropriate form. Let UT be an extension of U1
C     to an N-by-N orthogonal matrix, using identity submatrices. Then A
C     is replaced by UT'*A*UT and the contents of array U is U * UT.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C     March 1998. Based on the RASP routine SPLITB.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Eigenvalues, orthogonal transformation, real Schur form,
C     similarity transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER          INFO, L, LDA, LDU, N
      DOUBLE PRECISION E1, E2
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*), U(LDU,*)
C     .. Local Scalars ..
      INTEGER          L1
      DOUBLE PRECISION EW1, EW2, CS, SN
C     .. External Subroutines ..
      EXTERNAL         DLANV2, DROT, XERBLA
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( N.LT.2 ) THEN
         INFO = -1
      ELSE IF( L.LT.1 .OR. L.GE.N ) THEN
         INFO = -2
      ELSE IF( LDA.LT.N ) THEN
         INFO = -4
      ELSE IF( LDU.LT.N ) THEN
         INFO = -6
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB03QY', -INFO )
         RETURN
      END IF
C
C     Compute the eigenvalues and the elements of the Givens
C     transformation.
C
      L1 = L + 1
      CALL DLANV2( A(L,L), A(L,L1), A(L1,L), A(L1,L1), E1, E2,
     $             EW1, EW2, CS, SN )
      IF( E2.EQ.ZERO ) E2 = EW1
C
C     Apply the transformation to A.
C
      IF( L1.LT.N )
     $   CALL DROT( N-L1, A(L,L1+1), LDA, A(L1,L1+1), LDA, CS, SN )
      CALL DROT( L-1, A(1,L), 1, A(1,L1), 1, CS, SN )
C
C     Accumulate the transformation in U.
C
      CALL DROT( N, U(1,L), 1, U(1,L1), 1, CS, SN )
C
      RETURN
C *** Last line of MB03QY ***
      END