1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
SUBROUTINE MB03QY( N, L, A, LDA, U, LDU, E1, E2, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the eigenvalues of a selected 2-by-2 diagonal block
C of an upper quasi-triangular matrix, to reduce the selected block
C to the standard form and to split the block in the case of real
C eigenvalues by constructing an orthogonal transformation UT.
C This transformation is applied to A (by similarity) and to
C another matrix U from the right.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and UT. N >= 2.
C
C L (input) INTEGER
C Specifies the position of the block. 1 <= L < N.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the upper quasi-triangular matrix A whose
C selected 2-by-2 diagonal block is to be processed.
C On exit, the leading N-by-N part of this array contains
C the upper quasi-triangular matrix A after its selected
C block has been splitt and/or put in the LAPACK standard
C form.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C On entry, the leading N-by-N part of this array must
C contain a transformation matrix U.
C On exit, the leading N-by-N part of this array contains
C U*UT, where UT is the transformation matrix used to
C split and/or standardize the selected block.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= N.
C
C E1, E2 (output) DOUBLE PRECISION
C E1 and E2 contain either the real eigenvalues or the real
C and positive imaginary parts, respectively, of the complex
C eigenvalues of the selected 2-by-2 diagonal block of A.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Let A1 = ( A(L,L) A(L,L+1) )
C ( A(L+1,L) A(L+1,L+1) )
C be the specified 2-by-2 diagonal block of matrix A.
C If the eigenvalues of A1 are complex, then they are computed and
C stored in E1 and E2, where the real part is stored in E1 and the
C positive imaginary part in E2. The 2-by-2 block is reduced if
C necessary to the standard form, such that A(L,L) = A(L+1,L+1), and
C A(L,L+1) and A(L+1,L) have oposite signs. If the eigenvalues are
C real, the 2-by-2 block is reduced to an upper triangular form such
C that ABS(A(L,L)) >= ABS(A(L+1,L+1)).
C In both cases, an orthogonal rotation U1' is constructed such that
C U1'*A1*U1 has the appropriate form. Let UT be an extension of U1
C to an N-by-N orthogonal matrix, using identity submatrices. Then A
C is replaced by UT'*A*UT and the contents of array U is U * UT.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C March 1998. Based on the RASP routine SPLITB.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Eigenvalues, orthogonal transformation, real Schur form,
C similarity transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, L, LDA, LDU, N
DOUBLE PRECISION E1, E2
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), U(LDU,*)
C .. Local Scalars ..
INTEGER L1
DOUBLE PRECISION EW1, EW2, CS, SN
C .. External Subroutines ..
EXTERNAL DLANV2, DROT, XERBLA
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.2 ) THEN
INFO = -1
ELSE IF( L.LT.1 .OR. L.GE.N ) THEN
INFO = -2
ELSE IF( LDA.LT.N ) THEN
INFO = -4
ELSE IF( LDU.LT.N ) THEN
INFO = -6
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB03QY', -INFO )
RETURN
END IF
C
C Compute the eigenvalues and the elements of the Givens
C transformation.
C
L1 = L + 1
CALL DLANV2( A(L,L), A(L,L1), A(L1,L), A(L1,L1), E1, E2,
$ EW1, EW2, CS, SN )
IF( E2.EQ.ZERO ) E2 = EW1
C
C Apply the transformation to A.
C
IF( L1.LT.N )
$ CALL DROT( N-L1, A(L,L1+1), LDA, A(L1,L1+1), LDA, CS, SN )
CALL DROT( L-1, A(1,L), 1, A(1,L1), 1, CS, SN )
C
C Accumulate the transformation in U.
C
CALL DROT( N, U(1,L), 1, U(1,L1), 1, CS, SN )
C
RETURN
C *** Last line of MB03QY ***
END
|