1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
SUBROUTINE MB03RD( JOBX, SORT, N, PMAX, A, LDA, X, LDX, NBLCKS,
$ BLSIZE, WR, WI, TOL, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce a matrix A in real Schur form to a block-diagonal form
C using well-conditioned non-orthogonal similarity transformations.
C The condition numbers of the transformations used for reduction
C are roughly bounded by PMAX*PMAX, where PMAX is a given value.
C The transformations are optionally postmultiplied in a given
C matrix X. The real Schur form is optionally ordered, so that
C clustered eigenvalues are grouped in the same block.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBX CHARACTER*1
C Specifies whether or not the transformations are
C accumulated, as follows:
C = 'N': The transformations are not accumulated;
C = 'U': The transformations are accumulated in X (the
C given matrix X is updated).
C
C SORT CHARACTER*1
C Specifies whether or not the diagonal blocks of the real
C Schur form are reordered, as follows:
C = 'N': The diagonal blocks are not reordered;
C = 'S': The diagonal blocks are reordered before each
C step of reduction, so that clustered eigenvalues
C appear in the same block;
C = 'C': The diagonal blocks are not reordered, but the
C "closest-neighbour" strategy is used instead of
C the standard "closest to the mean" strategy
C (see METHOD);
C = 'B': The diagonal blocks are reordered before each
C step of reduction, and the "closest-neighbour"
C strategy is used (see METHOD).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and X. N >= 0.
C
C PMAX (input) DOUBLE PRECISION
C An upper bound for the infinity norm of elementary
C submatrices of the individual transformations used for
C reduction (see METHOD). PMAX >= 1.0D0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A to be block-diagonalized, in real
C Schur form.
C On exit, the leading N-by-N part of this array contains
C the computed block-diagonal matrix, in real Schur
C canonical form. The non-diagonal blocks are set to zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, if JOBX = 'U', the leading N-by-N part of this
C array must contain a given matrix X.
C On exit, if JOBX = 'U', the leading N-by-N part of this
C array contains the product of the given matrix X and the
C transformation matrix that reduced A to block-diagonal
C form. The transformation matrix is itself a product of
C non-orthogonal similarity transformations having elements
C with magnitude less than or equal to PMAX.
C If JOBX = 'N', this array is not referenced.
C
C LDX INTEGER
C The leading dimension of array X.
C LDX >= 1, if JOBX = 'N';
C LDX >= MAX(1,N), if JOBX = 'U'.
C
C NBLCKS (output) INTEGER
C The number of diagonal blocks of the matrix A.
C
C BLSIZE (output) INTEGER array, dimension (N)
C The first NBLCKS elements of this array contain the orders
C of the resulting diagonal blocks of the matrix A.
C
C WR, (output) DOUBLE PRECISION arrays, dimension (N)
C WI These arrays contain the real and imaginary parts,
C respectively, of the eigenvalues of the matrix A.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in the ordering of the diagonal
C blocks of the real Schur form matrix.
C If the user sets TOL > 0, then the given value of TOL is
C used as an absolute tolerance: a block i and a temporarily
C fixed block 1 (the first block of the current trailing
C submatrix to be reduced) are considered to belong to the
C same cluster if their eigenvalues satisfy
C
C | lambda_1 - lambda_i | <= TOL.
C
C If the user sets TOL < 0, then the given value of TOL is
C used as a relative tolerance: a block i and a temporarily
C fixed block 1 are considered to belong to the same cluster
C if their eigenvalues satisfy, for j = 1, ..., N,
C
C | lambda_1 - lambda_i | <= | TOL | * max | lambda_j |.
C
C If the user sets TOL = 0, then an implicitly computed,
C default tolerance, defined by TOL = SQRT( SQRT( EPS ) )
C is used instead, as a relative tolerance, where EPS is
C the machine precision (see LAPACK Library routine DLAMCH).
C If SORT = 'N' or 'C', this parameter is not referenced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Consider first that SORT = 'N'. Let
C
C ( A A )
C ( 11 12 )
C A = ( ),
C ( 0 A )
C ( 22 )
C
C be the given matrix in real Schur form, where initially A is the
C 11
C first diagonal block of dimension 1-by-1 or 2-by-2. An attempt is
C made to compute a transformation matrix X of the form
C
C ( I P )
C X = ( ) (1)
C ( 0 I )
C
C (partitioned as A), so that
C
C ( A 0 )
C -1 ( 11 )
C X A X = ( ),
C ( 0 A )
C ( 22 )
C
C and the elements of P do not exceed the value PMAX in magnitude.
C An adaptation of the standard method for solving Sylvester
C equations [1], which controls the magnitude of the individual
C elements of the computed solution [2], is used to obtain matrix P.
C When this attempt failed, an 1-by-1 (or 2-by-2) diagonal block of
C A , whose eigenvalue(s) is (are) the closest to the mean of those
C 22
C of A is selected, and moved by orthogonal similarity
C 11
C transformations in the leading position of A ; the moved diagonal
C 22
C block is then added to the block A , increasing its order by 1
C 11
C (or 2). Another attempt is made to compute a suitable
C transformation matrix X with the new definitions of the blocks A
C 11
C and A . After a successful transformation matrix X has been
C 22
C obtained, it postmultiplies the current transformation matrix
C (if JOBX = 'U'), and the whole procedure is repeated for the
C matrix A .
C 22
C
C When SORT = 'S', the diagonal blocks of the real Schur form are
C reordered before each step of the reduction, so that each cluster
C of eigenvalues, defined as specified in the definition of TOL,
C appears in adjacent blocks. The blocks for each cluster are merged
C together, and the procedure described above is applied to the
C larger blocks. Using the option SORT = 'S' will usually provide
C better efficiency than the standard option (SORT = 'N'), proposed
C in [2], because there could be no or few unsuccessful attempts
C to compute individual transformation matrices X of the form (1).
C However, the resulting dimensions of the blocks are usually
C larger; this could make subsequent calculations less efficient.
C
C When SORT = 'C' or 'B', the procedure is similar to that for
C SORT = 'N' or 'S', respectively, but the block of A whose
C 22
C eigenvalue(s) is (are) the closest to those of A (not to their
C 11
C mean) is selected and moved to the leading position of A . This
C 22
C is called the "closest-neighbour" strategy.
C
C REFERENCES
C
C [1] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Bavely, C. and Stewart, G.W.
C An Algorithm for Computing Reducing Subspaces by Block
C Diagonalization.
C SIAM J. Numer. Anal., 16, pp. 359-367, 1979.
C
C [3] Demmel, J.
C The Condition Number of Equivalence Transformations that
C Block Diagonalize Matrix Pencils.
C SIAM J. Numer. Anal., 20, pp. 599-610, 1983.
C
C NUMERICAL ASPECTS
C 3 4
C The algorithm usually requires 0(N ) operations, but 0(N ) are
C possible in the worst case, when all diagonal blocks in the real
C Schur form of A are 1-by-1, and the matrix cannot be diagonalized
C by well-conditioned transformations.
C
C FURTHER COMMENTS
C
C The individual non-orthogonal transformation matrices used in the
C reduction of A to a block-diagonal form have condition numbers
C of the order PMAX*PMAX. This does not guarantee that their product
C is well-conditioned enough. The routine can be easily modified to
C provide estimates for the condition numbers of the clusters of
C eigenvalues.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, June 1998.
C Partly based on the RASP routine BDIAG by A. Varga, German
C Aerospace Center, DLR Oberpfaffenhofen.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2003.
C
C KEYWORDS
C
C Diagonalization, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBX, SORT
INTEGER INFO, LDA, LDX, N, NBLCKS
DOUBLE PRECISION PMAX, TOL
C .. Array Arguments ..
INTEGER BLSIZE(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), WI(*), WR(*), X(LDX,*)
C .. Local Scalars ..
LOGICAL LJOBX, LSORN, LSORS, LSORT
CHARACTER JOBV
INTEGER DA11, DA22, I, IERR, J, K, L, L11, L22, L22M1
DOUBLE PRECISION C, CAV, D, EDIF, EMAX, RAV, SAFEMN, SC, THRESH
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
EXTERNAL DLAMCH, DLAPY2, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DLABAD, DLASET, DSCAL, MA02AD, MB03QX,
$ MB03RX, MB03RY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LJOBX = LSAME( JOBX, 'U' )
LSORN = LSAME( SORT, 'N' )
LSORS = LSAME( SORT, 'S' )
LSORT = LSAME( SORT, 'B' ) .OR. LSORS
IF( .NOT.LJOBX .AND. .NOT.LSAME( JOBX, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSORN .AND. .NOT.LSORT .AND.
$ .NOT.LSAME( SORT, 'C' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( PMAX.LT.ONE ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( ( LDX.LT.1 ) .OR. ( LJOBX .AND. LDX.LT.N ) ) THEN
INFO = -8
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB03RD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
NBLCKS = 0
IF( N.EQ.0 )
$ RETURN
C
C Set the "safe" minimum positive number with representable
C reciprocal, and set JOBV parameter for MB03RX routine.
C
SAFEMN = DLAMCH( 'Safe minimum' )
SC = ONE / SAFEMN
CALL DLABAD( SAFEMN, SC )
SAFEMN = SAFEMN / DLAMCH( 'Precision' )
JOBV = JOBX
IF ( LJOBX )
$ JOBV = 'V'
C
C Compute the eigenvalues of A and set the tolerance for reordering
C the eigenvalues in clusters, if needed.
C
CALL MB03QX( N, A, LDA, WR, WI, INFO )
C
IF ( LSORT ) THEN
THRESH = ABS( TOL )
IF ( THRESH.EQ.ZERO ) THEN
C
C Use the default tolerance in ordering the blocks.
C
THRESH = SQRT( SQRT( DLAMCH( 'Epsilon' ) ) )
END IF
C
IF ( TOL.LE.ZERO ) THEN
C
C Use a relative tolerance. Find max | lambda_j |, j = 1 : N.
C
EMAX = ZERO
L = 1
C WHILE ( L.LE.N ) DO
10 IF ( L.LE.N ) THEN
IF ( WI(L).EQ.ZERO ) THEN
EMAX = MAX( EMAX, ABS( WR(L) ) )
L = L + 1
ELSE
EMAX = MAX( EMAX, DLAPY2( WR(L), WI(L) ) )
L = L + 2
END IF
GO TO 10
END IF
C END WHILE 10
THRESH = THRESH * EMAX
END IF
END IF
C
C Define the following submatrices of A:
C A11, the DA11-by-DA11 block in position (L11,L11);
C A22, the DA22-by-DA22 block in position (L22,L22);
C A12, the DA11-by-DA22 block in position (L11,L22);
C A21, the DA22-by-DA11 block in position (L22,L11) (null initially
C and finally).
C The following loop uses L11 as loop variable and try to separate a
C block in position (L11,L11), with possibly clustered eigenvalues,
C separated by the other eigenvalues (in the block A22).
C
L11 = 1
C WHILE ( L11.LE.N ) DO
20 IF ( L11.LE.N ) THEN
NBLCKS = NBLCKS + 1
IF ( WI(L11).EQ.ZERO ) THEN
DA11 = 1
ELSE
DA11 = 2
END IF
C
IF ( LSORT ) THEN
C
C The following loop, using K as loop variable, finds the
C blocks whose eigenvalues are close to those of A11 and
C moves these blocks (if any) to the leading position of A22.
C
L22 = L11 + DA11
K = L22
C WHILE ( K.LE.N ) DO
30 IF ( K.LE.N ) THEN
EDIF = DLAPY2( WR(L11) - WR(K), WI(L11) - WI(K) )
IF ( EDIF.LE.THRESH ) THEN
C
C An 1x1 or a 2x2 block of A22 has been found so that
C
C abs( lambda_1 - lambda_k ) <= THRESH
C
C where lambda_1 and lambda_k denote an eigenvalue
C of A11 and of that block in A22, respectively.
C Try to move that block to the leading position of A22.
C
CALL MB03RX( JOBV, N, L22, K, A, LDA, X, LDX, WR, WI,
$ DWORK )
C
C Extend A11 with the leading block of A22.
C
IF ( WI(L22).EQ.ZERO ) THEN
DA11 = DA11 + 1
ELSE
DA11 = DA11 + 2
END IF
L22 = L11 + DA11
END IF
IF ( WI(K).EQ.ZERO ) THEN
K = K + 1
ELSE
K = K + 2
END IF
GO TO 30
END IF
C END WHILE 30
END IF
C
C The following loop uses L22 as loop variable and forms a
C separable DA11-by-DA11 block A11 in position (L11,L11).
C
L22 = L11 + DA11
L22M1 = L22 - 1
C WHILE ( L22.LE.N ) DO
40 IF ( L22.LE.N ) THEN
DA22 = N - L22M1
C
C Try to separate the block A11 of order DA11 by using a
C well-conditioned similarity transformation.
C
C First save A12' in the block A21.
C
CALL MA02AD( 'Full', DA11, DA22, A(L11,L22), LDA,
$ A(L22,L11), LDA )
C
C Solve -A11*P + P*A22 = A12.
C
CALL MB03RY( DA11, DA22, PMAX, A(L11,L11), LDA, A(L22,L22),
$ LDA, A(L11,L22), LDA, IERR )
C
IF ( IERR.EQ.1 ) THEN
C
C The annihilation of A12 failed. Restore A12 and A21.
C
CALL MA02AD( 'Full', DA22, DA11, A(L22,L11), LDA,
$ A(L11,L22), LDA )
CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, A(L22,L11),
$ LDA )
C
IF ( LSORN .OR. LSORS ) THEN
C
C Extend A11 with an 1x1 or 2x2 block of A22 having the
C nearest eigenvalues to the mean of eigenvalues of A11
C and resume the loop.
C First compute the mean of eigenvalues of A11.
C
RAV = ZERO
CAV = ZERO
C
DO 50 I = L11, L22M1
RAV = RAV + WR(I)
CAV = CAV + ABS( WI(I) )
50 CONTINUE
C
RAV = RAV/DA11
CAV = CAV/DA11
C
C Loop to find the eigenvalue of A22 nearest to the
C above computed mean.
C
D = DLAPY2( RAV-WR(L22), CAV-WI(L22) )
K = L22
IF ( WI(L22).EQ.ZERO ) THEN
L = L22 + 1
ELSE
L = L22 + 2
END IF
C WHILE ( L.LE.N ) DO
60 IF ( L.LE.N ) THEN
C = DLAPY2( RAV-WR(L), CAV-WI(L) )
IF ( C.LT.D ) THEN
D = C
K = L
END IF
IF ( WI(L).EQ.ZERO ) THEN
L = L + 1
ELSE
L = L + 2
END IF
GO TO 60
END IF
C END WHILE 60
C
ELSE
C
C Extend A11 with an 1x1 or 2x2 block of A22 having the
C nearest eigenvalues to the cluster of eigenvalues of
C A11 and resume the loop.
C
C Loop to find the eigenvalue of A22 of minimum distance
C to the cluster.
C
D = SC
L = L22
K = L22
C WHILE ( L.LE.N ) DO
70 IF ( L.LE.N ) THEN
I = L11
C WHILE ( I.LE.L22M1 ) DO
80 IF ( I.LE.L22M1 ) THEN
C = DLAPY2( WR(I)-WR(L), WI(I)-WI(L) )
IF ( C.LT.D ) THEN
D = C
K = L
END IF
IF ( WI(I).EQ.ZERO ) THEN
I = I + 1
ELSE
I = I + 2
END IF
GO TO 80
END IF
C END WHILE 80
IF ( WI(L).EQ.ZERO ) THEN
L = L + 1
ELSE
L = L + 2
END IF
GO TO 70
END IF
C END WHILE 70
END IF
C
C Try to move block found to the leading position of A22.
C
CALL MB03RX( JOBV, N, L22, K, A, LDA, X, LDX, WR, WI,
$ DWORK )
C
C Extend A11 with the leading block of A22.
C
IF ( WI(L22).EQ.ZERO ) THEN
DA11 = DA11 + 1
ELSE
DA11 = DA11 + 2
END IF
L22 = L11 + DA11
L22M1 = L22 - 1
GO TO 40
END IF
END IF
C END WHILE 40
C
IF ( LJOBX ) THEN
C
C Accumulate the transformation in X.
C Only columns L22, ..., N are modified.
C
IF ( L22.LE.N )
$ CALL DGEMM( 'No transpose', 'No transpose', N, DA22,
$ DA11, ONE, X(1,L11), LDX, A(L11,L22), LDA,
$ ONE, X(1,L22), LDX )
C
C Scale to unity the (non-zero) columns of X which will be
C no more modified and transform A11 accordingly.
C
DO 90 J = L11, L22M1
SC = DNRM2( N, X(1,J), 1 )
IF ( SC.GT.SAFEMN ) THEN
CALL DSCAL( DA11, SC, A(J,L11), LDA )
SC = ONE/SC
CALL DSCAL( N, SC, X(1,J), 1 )
CALL DSCAL( DA11, SC, A(L11,J), 1 )
END IF
90 CONTINUE
C
END IF
IF ( L22.LE.N ) THEN
C
C Set A12 and A21 to zero.
C
CALL DLASET( 'Full', DA11, DA22, ZERO, ZERO, A(L11,L22),
$ LDA )
CALL DLASET( 'Full', DA22, DA11, ZERO, ZERO, A(L22,L11),
$ LDA )
END IF
C
C Store the orders of the diagonal blocks in BLSIZE.
C
BLSIZE(NBLCKS) = DA11
L11 = L22
GO TO 20
END IF
C END WHILE 20
C
RETURN
C *** Last line of MB03RD ***
END
|