File: MB03RY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (261 lines) | stat: -rw-r--r-- 8,882 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
      SUBROUTINE MB03RY( M, N, PMAX, A, LDA, B, LDB, C, LDC, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve the Sylvester equation -AX + XB = C, where A and B are
C     M-by-M and N-by-N matrices, respectively, in real Schur form.
C
C     This routine is intended to be called only by SLICOT Library
C     routine MB03RD. For efficiency purposes, the computations are
C     aborted when the infinity norm of an elementary submatrix of X is
C     greater than a given value PMAX.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The order of the matrix A and the number of rows of the
C             matrices C and X.  M >= 0.
C
C     N       (input) INTEGER
C             The order of the matrix B and the number of columns of the
C             matrices C and X.  N >= 0.
C
C     PMAX    (input) DOUBLE PRECISION
C             An upper bound for the infinity norm of an elementary
C             submatrix of X (see METHOD).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             The leading M-by-M part of this array must contain the
C             matrix A of the Sylvester equation, in real Schur form.
C             The elements below the real Schur form are not referenced.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,N)
C             The leading N-by-N part of this array must contain the
C             matrix B of the Sylvester equation, in real Schur form.
C             The elements below the real Schur form are not referenced.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading M-by-N part of this array must
C             contain the matrix C of the Sylvester equation.
C             On exit, if INFO = 0, the leading M-by-N part of this
C             array contains the solution matrix X of the Sylvester
C             equation, and each elementary submatrix of X (see METHOD)
C             has the infinity norm less than or equal to PMAX.
C             On exit, if INFO = 1, the solution matrix X has not been
C             computed completely, because an elementary submatrix of X
C             had the infinity norm greater than PMAX. Part of the
C             matrix C has possibly been overwritten with the
C             corresponding part of X.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,M).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  an elementary submatrix of X had the infinity norm
C                   greater than the given value PMAX.
C
C     METHOD
C
C     The routine uses an adaptation of the standard method for solving
C     Sylvester equations [1], which controls the magnitude of the
C     individual elements of the computed solution [2]. The equation
C     -AX + XB = C can be rewritten as
C                                 p            l-1
C       -A  X   + X  B   = C   + sum  A  X   - sum  X  B
C         kk kl    kl ll    kl  i=k+1  ki il   j=1   kj jl
C
C     for l = 1:q, and k = p:-1:1, where A  , B  , C  , and X  , are
C                                         kk   ll   kl       kl
C     block submatrices defined by the partitioning induced by the Schur
C     form of A and B, and p and q are the numbers of the diagonal
C     blocks of A and B, respectively. So, the elementary submatrices of
C     X are found block column by block column, starting from the
C     bottom. If any such elementary submatrix has the infinity norm
C     greater than the given value PMAX, the calculations are ended.
C
C     REFERENCES
C
C     [1] Bartels, R.H. and Stewart, G.W.  T
C         Solution of the matrix equation A X + XB = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Bavely, C. and Stewart, G.W.
C         An Algorithm for Computing Reducing Subspaces by Block
C         Diagonalization.
C         SIAM J. Numer. Anal., 16, pp. 359-367, 1979.
C
C     NUMERICAL ASPECTS
C                               2      2
C     The algorithm requires 0(M N + MN ) operations.
C
C     FURTHER COMMENTS
C
C     Let
C
C            ( A   C )       ( I   X )
C        M = (       ),  Y = (       ).
C            ( 0   B )       ( 0   I )
C
C     Then
C
C         -1      ( A   0 )
C        Y  M Y = (       ),
C                 ( 0   B )
C
C     hence Y is an non-orthogonal transformation matrix which performs
C     the reduction of M to a block-diagonal form. Bounding a norm of
C     X is equivalent to setting an upper bound to the condition number
C     of the transformation matrix Y.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, June 1998.
C     Based on the RASP routine SYLSM by A. Varga, German Aerospace
C     Center, DLR Oberpfaffenhofen.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Diagonalization, real Schur form, Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, M, N
      DOUBLE PRECISION  PMAX
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*)
C     .. Local Scalars ..
      INTEGER           DK, DL, I, IERR, J, K, KK, KK1, L, LL, LM1
      DOUBLE PRECISION  PNORM, SCALE
C     .. Local Arrays ..
      DOUBLE PRECISION  P(4)
C     .. External Functions ..
      DOUBLE PRECISION  DDOT
      EXTERNAL          DDOT
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DGEMV, DLASY2
C     .. Executable Statements ..
C
C     For efficiency reasons, this routine does not check the input
C     parameters for errors.
C
      INFO = 0
C
C     Column loop indexed by L.
C
      L = 1
C     WHILE ( L.LE.N ) DO
   10 IF ( L.LE.N ) THEN
         LM1 = L - 1
         DL = 1
         IF ( L.LT.N ) THEN
            IF ( B(L+1,L).NE.ZERO )
     $         DL = 2
         ENDIF
         LL = LM1 + DL
         IF ( LM1.GT.0 ) THEN
C
C           Update one (or two) column(s) of C.
C
            IF ( DL.EQ.2 ) THEN
               CALL DGEMM( 'No transpose', 'No transpose', M, DL, LM1,
     $                     -ONE, C, LDC, B(1,L), LDB, ONE, C(1,L), LDC )
            ELSE
               CALL DGEMV( 'No transpose', M, LM1, -ONE, C, LDC, B(1,L),
     $                     1, ONE, C(1,L), 1 )
            END IF
         ENDIF
C
C        Row loop indexed by KK.
C
         KK = M
C        WHILE ( KK.GE.1 ) DO
   20    IF ( KK.GE.1 ) THEN
            KK1 = KK + 1
            DK = 1
            IF ( KK.GT.1 ) THEN
               IF ( A(KK,KK-1).NE.ZERO )
     $            DK = 2
            ENDIF
            K = KK1 - DK
            IF ( K.LT.M ) THEN
C
C              Update an elementary submatrix of C.
C
               DO 40 J = L, LL
C
                  DO 30 I = K, KK
                     C(I,J) = C(I,J) +
     $                        DDOT( M-KK, A(I,KK1), LDA, C(KK1,J), 1 )
   30             CONTINUE
C
   40          CONTINUE
C
            ENDIF
            CALL DLASY2( .FALSE., .FALSE., -1, DK, DL, A(K,K), LDA,
     $                   B(L,L), LDB, C(K,L), LDC, SCALE, P, DK, PNORM,
     $                   IERR )
            IF( SCALE.NE.ONE .OR. PNORM.GT.PMAX ) THEN
                INFO = 1
                RETURN
            END IF
            C(K,L) = -P(1)
            IF ( DL.EQ.1 ) THEN
               IF ( DK.EQ.2 )
     $            C(KK,L)  = -P(2)
            ELSE
               IF ( DK.EQ.1 ) THEN
                  C(K,LL)  = -P(2)
               ELSE
                  C(KK,L)  = -P(2)
                  C(K,LL)  = -P(3)
                  C(KK,LL) = -P(4)
               ENDIF
            ENDIF
            KK = KK - DK
            GO TO 20
         END IF
C        END WHILE 20
         L = L + DL
         GO TO 10
      END IF
C     END WHILE 10
      RETURN
C *** Last line of MB03RY ***
      END