1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
SUBROUTINE MB03SD( JOBSCL, N, A, LDA, QG, LDQG, WR, WI, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the eigenvalues of an N-by-N square-reduced Hamiltonian
C matrix
C
C ( A' G' )
C H' = ( T ). (1)
C ( Q' -A' )
C
C Here, A' is an N-by-N matrix, and G' and Q' are symmetric N-by-N
C matrices. It is assumed without a check that H' is square-
C reduced, i.e., that
C
C 2 ( A'' G'' )
C H' = ( T ) with A'' upper Hessenberg. (2)
C ( 0 A'' )
C
C T 2
C (Equivalently, Q'A'- A' Q' = 0, A'' = A' + G'Q', and for i > j+1,
C A''(i,j) = 0.) Ordinarily, H' is the output from SLICOT Library
C routine MB04ZD. The eigenvalues of H' are computed as the square
C roots of the eigenvalues of A''.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBSCL CHARACTER*1
C Specifies whether or not balancing operations should
C be performed by the LAPACK subroutine DGEBAL on the
C Hessenberg matrix A'' in (2), as follows:
C = 'N': do not use balancing;
C = 'S': do scaling in order to equilibrate the rows
C and columns of A''.
C See LAPACK subroutine DGEBAL and Section METHOD below.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, G, and Q. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C upper left block A' of the square-reduced Hamiltonian
C matrix H' in (1), as produced by SLICOT Library routine
C MB04ZD.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C QG (input) DOUBLE PRECISION array, dimension (LDQG,N+1)
C The leading N-by-N lower triangular part of this array
C must contain the lower triangle of the lower left
C symmetric block Q' of the square-reduced Hamiltonian
C matrix H' in (1), and the N-by-N upper triangular part of
C the submatrix in the columns 2 to N+1 of this array must
C contain the upper triangle of the upper right symmetric
C block G' of the square-reduced Hamiltonian matrix H'
C in (1), as produced by SLICOT Library routine MB04ZD.
C So, if i >= j, then Q'(i,j) is stored in QG(i,j) and
C G'(i,j) is stored in QG(j,i+1).
C
C LDQG INTEGER
C The leading dimension of the array QG. LDQG >= MAX(1,N).
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C The arrays WR and WI contain the real and imaginary parts,
C respectively, of the N eigenvalues of H' with non-negative
C real part. The remaining N eigenvalues are the negatives
C of these eigenvalues.
C Eigenvalues are stored in WR and WI in decreasing order of
C magnitude of the real parts, i.e., WR(I) >= WR(I+1).
C (In particular, an eigenvalue closest to the imaginary
C axis is WR(N)+WI(N)i.)
C In addition, eigenvalues with zero real part are sorted in
C decreasing order of magnitude of imaginary parts. Note
C that non-real eigenvalues with non-zero real part appear
C in complex conjugate pairs, but eigenvalues with zero real
C part do not, in general, appear in complex conjugate
C pairs.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= MAX(1,N*(N+1)).
C For good performance, LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, then the i-th argument had an illegal
C value;
C > 0: if INFO = i, i <= N, then LAPACK subroutine DHSEQR
C failed to converge while computing the i-th
C eigenvalue.
C
C METHOD
C
C The routine forms the upper Hessenberg matrix A'' in (2) and calls
C LAPACK subroutines to calculate its eigenvalues. The eigenvalues
C of H' are the square roots of the eigenvalues of A''.
C
C REFERENCES
C
C [1] Van Loan, C. F.
C A Symplectic Method for Approximating All the Eigenvalues of
C a Hamiltonian Matrix.
C Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C [2] Byers, R.
C Hamiltonian and Symplectic Algorithms for the Algebraic
C Riccati Equation.
C Ph. D. Thesis, Cornell University, Ithaca, NY, January 1983.
C
C [3] Benner, P., Byers, R., and Barth, E.
C Fortran 77 Subroutines for Computing the Eigenvalues of
C Hamiltonian Matrices. I: The Square-Reduced Method.
C ACM Trans. Math. Software, 26, 1, pp. 49-77, 2000.
C
C NUMERICAL ASPECTS
C
C The algorithm requires (32/3)*N**3 + O(N**2) floating point
C operations.
C Eigenvalues computed by this subroutine are exact eigenvalues
C of a perturbed Hamiltonian matrix H' + E where
C
C || E || <= c sqrt(eps) || H' ||,
C
C c is a modest constant depending on the dimension N and eps is the
C machine precision. Moreover, if the norm of H' and an eigenvalue
C are of roughly the same magnitude, the computed eigenvalue is
C essentially as accurate as the computed eigenvalue obtained by
C traditional methods. See [1] or [2].
C
C CONTRIBUTOR
C
C P. Benner, Universitaet Bremen, Germany, and
C R. Byers, University of Kansas, Lawrence, USA.
C Aug. 1998, routine DHAEVS.
C V. Sima, Research Institute for Informatics, Bucharest, Romania,
C Oct. 1998, SLICOT Library version.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Nov. 2002,
C May 2009.
C
C KEYWORDS
C
C Eigenvalues, (square-reduced) Hamiltonian matrix, symplectic
C similarity transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDQG, LDWORK, N
CHARACTER JOBSCL
C ..
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), QG(LDQG,*), WI(*), WR(*)
C ..
C .. Local Scalars ..
DOUBLE PRECISION SWAP, X, Y
INTEGER BL, CHUNK, I, IGNORE, IHI, ILO, J, JW, JWORK, M,
$ N2
LOGICAL BLAS3, BLOCK, SCALE, SORTED
C ..
C .. Local Arrays ..
DOUBLE PRECISION DUMMY(1)
C ..
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DGEBAL, DGEMM, DHSEQR, DLACPY, DLASET,
$ DSYMM, DSYMV, MA01AD, MA02ED, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
INFO = 0
N2 = N*N
SCALE = LSAME( JOBSCL, 'S' )
IF ( .NOT. ( SCALE .OR. LSAME( JOBSCL, 'N' ) ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDQG.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDWORK.LT.MAX( 1, N2 + N ) ) THEN
INFO = -10
END IF
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03SD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
CHUNK = ( LDWORK - N2 ) / N
BLOCK = MIN( CHUNK, N ).GT.1
BLAS3 = CHUNK.GE.N
C
IF ( BLAS3 ) THEN
JWORK = N2 + 1
ELSE
JWORK = 1
END IF
C 2
C Form the matrix A'' = A' + G'Q'.
C
CALL DLACPY( 'Lower', N, N, QG, LDQG, DWORK(JWORK), N )
CALL MA02ED( 'Lower', N, DWORK(JWORK), N )
C
IF ( BLAS3 ) THEN
C
C Use BLAS 3 calculation.
C
CALL DSYMM( 'Left', 'Upper', N, N, ONE, QG(1, 2), LDQG,
$ DWORK(JWORK), N, ZERO, DWORK, N )
C
ELSE IF ( BLOCK ) THEN
JW = N2 + 1
C
C Use BLAS 3 for as many columns of Q' as possible.
C
DO 10 J = 1, N, CHUNK
BL = MIN( N-J+1, CHUNK )
CALL DSYMM( 'Left', 'Upper', N, BL, ONE, QG(1, 2), LDQG,
$ DWORK(1+N*(J-1)), N, ZERO, DWORK(JW), N )
CALL DLACPY( 'Full', N, BL, DWORK(JW), N, DWORK(1+N*(J-1)),
$ N )
10 CONTINUE
C
ELSE
C
C Use BLAS 2 calculation.
C
DO 20 J = 1, N
CALL DSYMV( 'Upper', N, ONE, QG(1, 2), LDQG,
$ DWORK(1+N*(J-1)), 1, ZERO, WR, 1 )
CALL DCOPY( N, WR, 1, DWORK(1+N*(J-1)), 1 )
20 CONTINUE
C
END IF
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, N, ONE, A, LDA, A,
$ LDA, ONE, DWORK, N )
IF ( SCALE .AND. N.GT.2 )
$ CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, DWORK(3), N )
C 2
C Find the eigenvalues of A' + G'Q'.
C
CALL DGEBAL( JOBSCL, N, DWORK, N, ILO, IHI, DWORK(1+N2), IGNORE )
CALL DHSEQR( 'Eigenvalues', 'NoSchurVectors', N, ILO, IHI, DWORK,
$ N, WR, WI, DUMMY, 1, DWORK(1+N2), N, INFO )
IF ( INFO.EQ.0 ) THEN
C
C Eigenvalues of H' are the square roots of those computed above.
C
DO 30 I = 1, N
X = WR(I)
Y = WI(I)
CALL MA01AD( X, Y, WR(I), WI(I) )
30 CONTINUE
C
C Sort eigenvalues into decreasing order by real part and, for
C eigenvalues with zero real part only, decreasing order of
C imaginary part. (This simple bubble sort preserves the
C relative order of eigenvalues with equal but nonzero real part.
C This ensures that complex conjugate pairs remain
C together.)
C
SORTED = .FALSE.
C
DO 50 M = N, 1, -1
IF ( SORTED ) GO TO 60
SORTED = .TRUE.
C
DO 40 I = 1, M - 1
IF ( ( ( WR(I).LT.WR(I+1) ) .OR.
$ ( ( WR(I).EQ.ZERO ) .AND. ( WR(I+1).EQ.ZERO ) .AND.
$ ( WI(I).LT.WI(I+1) ) ) ) ) THEN
SWAP = WR(I)
WR(I) = WR(I+1)
WR(I+1) = SWAP
SWAP = WI(I)
WI(I) = WI(I+1)
WI(I+1) = SWAP
C
SORTED = .FALSE.
C
END IF
40 CONTINUE
C
50 CONTINUE
C
60 CONTINUE
C
END IF
C
DWORK(1) = 2*N2
RETURN
C *** Last line of MB03SD ***
END
|