1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
SUBROUTINE MB03TD( TYP, COMPU, SELECT, LOWER, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, WR, WI, M, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reorder a matrix X in skew-Hamiltonian Schur form:
C
C [ A G ] T
C X = [ T ], G = -G,
C [ 0 A ]
C
C or in Hamiltonian Schur form:
C
C [ A G ] T
C X = [ T ], G = G,
C [ 0 -A ]
C
C where A is in upper quasi-triangular form, so that a selected
C cluster of eigenvalues appears in the leading diagonal blocks
C of the matrix A (in X) and the leading columns of [ U1; -U2 ] form
C an orthonormal basis for the corresponding right invariant
C subspace.
C
C If X is skew-Hamiltonian, then each eigenvalue appears twice; one
C copy corresponds to the j-th diagonal element and the other to the
C (n+j)-th diagonal element of X. The logical array LOWER controls
C which copy is to be reordered to the leading part of A.
C
C If X is Hamiltonian then the eigenvalues appear in pairs
C (lambda,-lambda); lambda corresponds to the j-th diagonal
C element and -lambda to the (n+j)-th diagonal element of X.
C The logical array LOWER controls whether lambda or -lambda is to
C be reordered to the leading part of A.
C
C The matrix A must be in Schur canonical form (as returned by the
C LAPACK routine DHSEQR), that is, block upper triangular with
C 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
C its diagonal elements equal and its off-diagonal elements of
C opposite sign.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYP CHARACTER*1
C Specifies the type of the input matrix X:
C = 'S': X is skew-Hamiltonian;
C = 'H': X is Hamiltonian.
C
C COMPU CHARACTER*1
C = 'U': update the matrices U1 and U2 containing the
C Schur vectors;
C = 'N': do not update U1 and U2.
C
C SELECT (input/output) LOGICAL array, dimension (N)
C SELECT specifies the eigenvalues in the selected cluster.
C To select a real eigenvalue w(j), SELECT(j) must be set
C to .TRUE.. To select a complex conjugate pair of
C eigenvalues w(j) and w(j+1), corresponding to a 2-by-2
C diagonal block, both SELECT(j) and SELECT(j+1) must be set
C to .TRUE.; a complex conjugate pair of eigenvalues must be
C either both included in the cluster or both excluded.
C
C LOWER (input/output) LOGICAL array, dimension (N)
C LOWER controls which copy of a selected eigenvalue is
C included in the cluster. If SELECT(j) is set to .TRUE.
C for a real eigenvalue w(j); then LOWER(j) must be set to
C .TRUE. if the eigenvalue corresponding to the (n+j)-th
C diagonal element of X is to be reordered to the leading
C part; and LOWER(j) must be set to .FALSE. if the
C eigenvalue corresponding to the j-th diagonal element of
C X is to be reordered to the leading part. Similarly, for
C a complex conjugate pair of eigenvalues w(j) and w(j+1),
C both LOWER(j) and LOWER(j+1) must be set to .TRUE. if the
C eigenvalues corresponding to the (n+j:n+j+1,n+j:n+j+1)
C diagonal block of X are to be reordered to the leading
C part.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the upper quasi-triangular matrix A in Schur
C canonical form.
C On exit, the leading N-by-N part of this array contains
C the reordered matrix A, again in Schur canonical form,
C with the selected eigenvalues in the diagonal blocks.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C On entry, if TYP = 'S', the leading N-by-N part of this
C array must contain the strictly upper triangular part of
C the skew-symmetric matrix G. The rest of this array is not
C referenced.
C On entry, if TYP = 'H', the leading N-by-N part of this
C array must contain the upper triangular part of the
C symmetric matrix G. The rest of this array is not
C referenced.
C On exit, if TYP = 'S', the leading N-by-N part of this
C array contains the strictly upper triangular part of the
C skew-symmetric matrix G, updated by the orthogonal
C symplectic transformation which reorders X.
C On exit, if TYP = 'H', the leading N-by-N part of this
C array contains the upper triangular part of the symmetric
C matrix G, updated by the orthogonal symplectic
C transformation which reorders X.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= MAX(1,N).
C
C U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C On entry, if COMPU = 'U', the leading N-by-N part of this
C array must contain U1, the (1,1) block of an orthogonal
C symplectic matrix U = [ U1, U2; -U2, U1 ].
C On exit, if COMPU = 'U', the leading N-by-N part of this
C array contains the (1,1) block of the matrix U,
C postmultiplied by the orthogonal symplectic transformation
C which reorders X. The leading M columns of U form an
C orthonormal basis for the specified invariant subspace.
C If COMPU = 'N', this array is not referenced.
C
C LDU1 INTEGER
C The leading dimension of the array U1.
C LDU1 >= MAX(1,N), if COMPU = 'U';
C LDU1 >= 1, otherwise.
C
C U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C On entry, if COMPU = 'U', the leading N-by-N part of this
C array must contain U2, the (1,2) block of an orthogonal
C symplectic matrix U = [ U1, U2; -U2, U1 ].
C On exit, if COMPU = 'U', the leading N-by-N part of this
C array contains the (1,2) block of the matrix U,
C postmultiplied by the orthogonal symplectic transformation
C which reorders X.
C If COMPU = 'N', this array is not referenced.
C
C LDU2 INTEGER
C The leading dimension of the array U2.
C LDU2 >= MAX(1,N), if COMPU = 'U';
C LDU2 >= 1, otherwise.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C The real and imaginary parts, respectively, of the
C reordered eigenvalues of A. The eigenvalues are stored
C in the same order as on the diagonal of A, with
C WR(i) = A(i,i) and, if A(i:i+1,i:i+1) is a 2-by-2 diagonal
C block, WI(i) > 0 and WI(i+1) = -WI(i). Note that if an
C eigenvalue is sufficiently ill-conditioned, then its value
C may differ significantly from its value before reordering.
C
C M (output) INTEGER
C The dimension of the specified invariant subspace.
C 0 <= M <= N.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -18, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C = 1: reordering of X failed because some eigenvalue pairs
C are too close to separate (the problem is very
C ill-conditioned); X may have been partially
C reordered, and WR and WI contain the eigenvalues in
C the same order as in X.
C
C REFERENCES
C
C [1] Bai, Z. and Demmel, J.W.
C On Swapping Diagonal Blocks in Real Schur Form.
C Linear Algebra Appl., 186, pp. 73-95, 1993.
C
C [2] Benner, P., Kressner, D., and Mehrmann, V.
C Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory,
C Algorithms and Applications. Techn. Report, TU Berlin, 2003.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, May 2008 (SLICOT version of the HAPACK routine DHAORD).
C
C KEYWORDS
C
C Hamiltonian matrix, skew-Hamiltonian matrix, invariant subspace.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER COMPU, TYP
INTEGER INFO, LDA, LDG, LDU1, LDU2, LDWORK, M, N
C .. Array Arguments ..
LOGICAL LOWER(*), SELECT(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), G(LDG,*), U1(LDU1,*),
$ U2(LDU2,*), WI(*), WR(*)
C .. Local Scalars ..
LOGICAL FLOW, ISHAM, PAIR, SWAP, WANTU
INTEGER HERE, IERR, IFST, ILST, K, KS, NBF, NBL, NBNEXT,
$ WRKMIN
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL MB03TS, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C
C .. Executable Statements ..
C
C Decode and check input parameters.
C
ISHAM = LSAME( TYP, 'H' )
WANTU = LSAME( COMPU, 'U' )
WRKMIN = MAX( 1, N )
INFO = 0
IF ( .NOT.ISHAM .AND. .NOT.LSAME( TYP, 'S' ) ) THEN
INFO = -1
ELSE IF ( .NOT.WANTU .AND. .NOT.LSAME( COMPU, 'N' ) ) THEN
INFO = -2
ELSE IF ( N.LT.0 ) THEN
INFO = -5
ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF ( LDG.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF ( LDU1.LT.1 .OR. ( WANTU .AND. LDU1.LT.N ) ) THEN
INFO = -11
ELSE IF ( LDU2.LT.1 .OR. ( WANTU .AND. LDU2.LT.N ) ) THEN
INFO = -13
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
INFO = -18
DWORK(1) = DBLE( WRKMIN )
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03TD', -INFO )
RETURN
END IF
C
C Set M to the dimension of the specified invariant subspace.
C
M = 0
PAIR = .FALSE.
DO 10 K = 1, N
IF ( PAIR ) THEN
PAIR = .FALSE.
ELSE
IF ( K.LT.N ) THEN
IF ( A(K+1,K).EQ.ZERO ) THEN
IF ( SELECT(K) )
$ M = M + 1
ELSE
PAIR = .TRUE.
IF ( SELECT(K) .OR. SELECT(K+1) )
$ M = M + 2
END IF
ELSE
IF ( SELECT(N) )
$ M = M + 1
END IF
END IF
10 CONTINUE
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Collect the selected blocks at the top-left corner of X.
C
KS = 0
PAIR = .FALSE.
DO 60 K = 1, N
IF ( PAIR ) THEN
PAIR = .FALSE.
ELSE
SWAP = SELECT(K)
FLOW = LOWER(K)
IF ( K.LT.N ) THEN
IF ( A(K+1,K).NE.ZERO ) THEN
PAIR = .TRUE.
SWAP = SWAP.OR.SELECT(K+1)
FLOW = FLOW.OR.LOWER(K+1)
END IF
END IF
C
IF ( PAIR ) THEN
NBF = 2
ELSE
NBF = 1
END IF
C
IF ( SWAP ) THEN
KS = KS + 1
IF ( FLOW ) THEN
C
C Step 1: Swap the K-th block to position N.
C
IFST = K
ILST = N
NBL = 1
IF ( ILST.GT.1 ) THEN
IF ( A(ILST,ILST-1).NE.ZERO ) THEN
ILST = ILST - 1
NBL = 2
END IF
END IF
C
C Update ILST.
C
IF ( NBF.EQ.2 .AND. NBL.EQ.1 )
$ ILST = ILST - 1
IF ( NBF.EQ.1 .AND. NBL.EQ.2 )
$ ILST = ILST + 1
C
IF ( ILST.EQ.IFST )
$ GO TO 30
C
HERE = IFST
C
20 CONTINUE
C
C Swap block with next one below.
C
IF ( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
C
C Current block is either 1-by-1 or 2-by-2.
C
NBNEXT = 1
IF ( HERE+NBF+1.LE.N ) THEN
IF ( A(HERE+NBF+1,HERE+NBF).NE.ZERO )
$ NBNEXT = 2
END IF
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, HERE, NBF, NBNEXT,
$ DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
HERE = HERE + NBNEXT
C
C Test if 2-by-2 block breaks into two 1-by-1 blocks.
C
IF ( NBF.EQ.2 ) THEN
IF ( A(HERE+1,HERE).EQ.ZERO )
$ NBF = 3
END IF
C
ELSE
C
C Current block consists of two 1-by-1 blocks each of
C which must be swapped individually.
C
NBNEXT = 1
IF ( HERE+3.LE.N ) THEN
IF ( A(HERE+3,HERE+2).NE.ZERO )
$ NBNEXT = 2
END IF
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, HERE+1, 1, NBNEXT,
$ DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
IF ( NBNEXT.EQ.1 ) THEN
C
C Swap two 1-by-1 blocks, no problems possible.
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE, 1,
$ NBNEXT, DWORK, IERR )
HERE = HERE + 1
ELSE
C
C Recompute NBNEXT in case 2 by 2 split.
C
IF ( A(HERE+2,HERE+1).EQ.ZERO )
$ NBNEXT = 1
IF ( NBNEXT.EQ.2 ) THEN
C
C 2-by-2 block did not split
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE, 1,
$ NBNEXT, DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
HERE = HERE + 2
ELSE
C
C 2-by-2 block did split
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE, 1, 1,
$ DWORK, IERR )
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE+1, 1,
$ 1, DWORK, IERR )
HERE = HERE + 2
END IF
END IF
END IF
IF ( HERE.LT.ILST )
$ GO TO 20
C
30 CONTINUE
C
C Step 2: Apply an orthogonal symplectic transformation
C to swap the last blocks in A and -A' (or A').
C
IF ( NBF.EQ.1 ) THEN
C
C Exchange columns/rows N <-> 2*N. No problems
C possible.
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, N, 1, 1,
$ DWORK, IERR )
C
ELSE IF ( NBF.EQ.2 ) THEN
C
C Swap last block with its equivalent by an
C orthogonal symplectic transformation.
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, N-1, 2, 2,
$ DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
C
C Test if 2-by-2 block breaks into two 1-by-1 blocks.
C
IF ( A(N-1,N).EQ.ZERO )
$ NBF = 3
ELSE
C
C Block did split. Swap (N-1)-th and N-th elements
C consecutively by symplectic generalized
C permutations and one rotation.
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, N, 1, 1, DWORK, IERR )
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, N-1, 1, 1, DWORK,
$ IERR )
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, N, 1, 1, DWORK, IERR )
END IF
IFST = N
IF ( PAIR )
$ IFST = N-1
ELSE
IFST = K
END IF
C
C Step 3: Swap the K-th / N-th block to position KS.
C
ILST = KS
NBL = 1
IF ( ILST.GT.1 ) THEN
IF ( A(ILST,ILST-1).NE.ZERO ) THEN
ILST = ILST - 1
NBL = 2
END IF
END IF
C
IF ( ILST.EQ.IFST )
$ GO TO 50
C
HERE = IFST
40 CONTINUE
C
C Swap block with next one above.
C
IF ( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
C
C Current block either 1 by 1 or 2 by 2.
C
NBNEXT = 1
IF ( HERE.GE.3 ) THEN
IF ( A(HERE-1,HERE-2).NE.ZERO )
$ NBNEXT = 2
END IF
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, HERE-NBNEXT, NBNEXT,
$ NBF, DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
HERE = HERE - NBNEXT
C
C Test if 2-by-2 block breaks into two 1-by-1 blocks.
C
IF ( NBF.EQ.2 ) THEN
IF ( A(HERE+1,HERE).EQ.ZERO )
$ NBF = 3
END IF
C
ELSE
C
C Current block consists of two 1 by 1 blocks each of
C which must be swapped individually.
C
NBNEXT = 1
IF ( HERE.GE.3 ) THEN
IF ( A(HERE-1,HERE-2).NE.ZERO )
$ NBNEXT = 2
END IF
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, HERE-NBNEXT, NBNEXT,
$ 1, DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
IF ( NBNEXT.EQ.1 ) THEN
C
C Swap two 1-by-1 blocks, no problems possible.
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1,
$ LDU1, U2, LDU2, HERE, NBNEXT, 1,
$ DWORK, IERR )
HERE = HERE - 1
ELSE
C
C Recompute NBNEXT in case 2-by-2 split.
C
IF ( A(HERE,HERE-1).EQ.ZERO )
$ NBNEXT = 1
IF ( NBNEXT.EQ.2 ) THEN
C
C 2-by-2 block did not split
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE-1, 2, 1,
$ DWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
GO TO 70
END IF
HERE = HERE - 2
ELSE
C
C 2-by-2 block did split
C
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE, 1, 1,
$ DWORK, IERR )
CALL MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG,
$ U1, LDU1, U2, LDU2, HERE-1, 1, 1,
$ DWORK, IERR )
HERE = HERE - 2
END IF
END IF
END IF
C
IF ( HERE.GT.ILST )
$ GO TO 40
C
50 CONTINUE
IF ( PAIR )
$ KS = KS + 1
END IF
END IF
60 CONTINUE
C
70 CONTINUE
C
C Store eigenvalues.
C
DO 80 K = 1, N
WR(K) = A(K,K)
WI(K) = ZERO
80 CONTINUE
DO 90 K = 1, N - 1
IF ( A(K+1,K).NE.ZERO ) THEN
WI(K) = SQRT( ABS( A(K,K+1) ) )*
$ SQRT( ABS( A(K+1,K) ) )
WI(K+1) = -WI(K)
END IF
90 CONTINUE
C
DWORK(1) = DBLE( WRKMIN )
C
RETURN
C *** Last line of MB03TD ***
END
|