File: MB03TS.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (746 lines) | stat: -rw-r--r-- 27,345 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
      SUBROUTINE MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1, LDU1, U2,
     $                   LDU2, J1, N1, N2, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To swap diagonal blocks A11 and A22 of order 1 or 2 in the upper
C     quasi-triangular matrix A contained in a skew-Hamiltonian matrix
C
C                   [  A   G  ]          T
C             X  =  [       T ],   G = -G,
C                   [  0   A  ]
C
C     or in a Hamiltonian matrix
C
C                   [  A   G  ]          T
C             X  =  [       T ],   G =  G.
C                   [  0  -A  ]
C
C     This routine is a modified version of the LAPACK subroutine
C     DLAEX2.
C
C     The matrix A must be in Schur canonical form (as returned by the
C     LAPACK routine DHSEQR), that is, block upper triangular with
C     1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
C     its diagonal elements equal and its off-diagonal elements of
C     opposite sign.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ISHAM   LOGIGAL
C             Specifies the type of X:
C             = .TRUE.:   X is a Hamiltonian matrix;
C             = .FALSE.:  X is a skew-Hamiltonian matrix.
C
C     WANTU   LOGIGAL
C             = .TRUE.:   update the matrices U1 and U2 containing the
C                         Schur vectors;
C             = .FALSE.:  do not update U1 and U2.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A. N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper quasi-triangular matrix A, in Schur
C             canonical form.
C             On exit, the leading N-by-N part of this array contains
C             the reordered matrix A, again in Schur canonical form.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     G       (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper triangular part of the symmetric
C             matrix G, if ISHAM = .TRUE., or the strictly upper
C             triangular part of the skew-symmetric matrix G, otherwise.
C             The rest of this array is not referenced.
C             On exit, the leading N-by-N part of this array contains
C             the upper or strictly upper triangular part of the
C             symmetric or skew-symmetric matrix G, respectively,
C             updated by the orthogonal transformation which reorders A.
C
C     LDG     INTEGER
C             The leading dimension of the array G.  LDG >= MAX(1,N).
C
C     U1      (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C             On entry, if WANTU = .TRUE., the leading N-by-N part of
C             this array must contain the matrix U1.
C             On exit, if WANTU = .TRUE., the leading N-by-N part of
C             this array contains U1, postmultiplied by the orthogonal
C             transformation which reorders A. See the description in
C             the SLICOT subroutine MB03TD for further details.
C             If WANTU = .FALSE., this array is not referenced.
C
C     LDU1    INTEGER
C             The leading dimension of the array U1.
C             LDU1 >= MAX(1,N),  if WANTU = .TRUE.;
C             LDU1 >= 1,         otherwise.
C
C     U2      (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C             On entry, if WANTU = .TRUE., the leading N-by-N part of
C             this array must contain the matrix U2.
C             On exit, if WANTU = .TRUE., the leading N-by-N part of
C             this array contains U2, postmultiplied by the orthogonal
C             transformation which reorders A.
C             If WANTU = .FALSE., this array is not referenced.
C
C     LDU2    INTEGER
C             The leading dimension of the array U2.
C             LDU2 >= MAX(1,N),  if WANTU = .TRUE.;
C             LDU2 >= 1,         otherwise.
C
C     J1      (input) INTEGER
C             The index of the first row of the first block A11.
C             If J1+N1 < N, then A11 is swapped with the block starting
C             at (J1+N1+1)-th diagonal element.
C             If J1+N1 > N, then A11 is the last block in A and swapped
C             with -A11', if ISHAM = .TRUE.,
C             or    A11', if ISHAM = .FALSE..
C
C     N1      (input) INTEGER
C             The order of the first block A11. N1 = 0, 1 or 2.
C
C     N2      (input) INTEGER
C             The order of the second block A22. N2 = 0, 1 or 2.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  the transformed matrix A would be too far from Schur
C                   form; the blocks are not swapped and A, G, U1 and
C                   U2 are unchanged.
C
C     REFERENCES
C
C     [1] Bai, Z., and Demmel, J.W.
C        On swapping diagonal blocks in real Schur form.
C        Linear Algebra Appl., 186, pp. 73-95, 1993.
C
C     [2] Benner, P., Kressner, D., and Mehrmann, V.
C         Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory,
C         Algorithms and Applications. Techn. Report, TU Berlin, 2003.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, May 2008 (SLICOT version of the HAPACK routine DHAEX2).
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE, TWO, THIRTY, FORTY
      PARAMETER          ( ZERO  = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
     $                     TWO   = 2.0D+0, THIRTY = 3.0D+1,
     $                     FORTY = 4.0D+1 )
      INTEGER            LDD, LDX
      PARAMETER          ( LDD = 4, LDX = 2 )
C     .. Scalar Arguments ..
      LOGICAL            ISHAM, WANTU
      INTEGER            INFO, J1, LDA, LDG, LDU1, LDU2, N, N1, N2
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), DWORK(*), G(LDG,*), U1(LDU1,*),
     $                   U2(LDU2,*)
C     .. Local Scalars ..
      LOGICAL            LBLK
      INTEGER            IERR, J2, J3, J4, K, ND
      DOUBLE PRECISION   A11, A22, A33, CS, DNORM, EPS, SCALE, SMLNUM,
     $                   SN, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
     $                   WR1, WR2, XNORM
C     .. Local Arrays ..
      DOUBLE PRECISION   D(LDD,4), V(3), V1(3), V2(3), X(LDX,2)
C     .. External Functions ..
      DOUBLE PRECISION   DDOT, DLAMCH, DLANGE
      EXTERNAL           DDOT, DLAMCH, DLANGE
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DLACPY, DLANV2, DLARFG, DLARFX, DLARTG,
     $                   DLASET, DLASY2, DROT, DSCAL, DSWAP, DSYMV,
     $                   DSYR2, MB01MD, MB01ND
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
C
C     .. Executable Statements ..
C
      INFO = 0
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
     $   RETURN
      LBLK = ( J1+N1.GT.N )
C
      J2 = J1 + 1
      J3 = J1 + 2
      J4 = J1 + 3
C
      IF ( LBLK .AND. N1.EQ.1 ) THEN
C
         IF ( ISHAM ) THEN
            A11 = A(N,N)
            CALL DLARTG( G(N,N), -TWO*A11, CS, SN, TEMP )
            CALL DROT( N-1, A(1,N), 1, G(1,N), 1, CS, SN )
            A(N,N) = -A11
            IF ( WANTU )
     $         CALL DROT( N, U1(1,N), 1, U2(1,N), 1, CS, SN )
         ELSE
            CALL DSWAP( N-1, A(1,N), 1, G(1,N), 1 )
            CALL DSCAL( N-1, -ONE, A(1,N), 1 )
            IF ( WANTU ) THEN
               CALL DSWAP( N, U1(1,N), 1, U2(1,N), 1 )
               CALL DSCAL( N, -ONE, U1(1,N), 1 )
            END IF
         END IF
C
      ELSE IF ( LBLK .AND. N1.EQ.2 ) THEN
C
         IF ( ISHAM ) THEN
C
C           Reorder Hamiltonian matrix:
C
C                      [ A11  G11  ]
C                      [         T ].
C                      [  0  -A11  ]
C
            ND = 4
            CALL DLACPY( 'Full', 2, 2, A(N-1,N-1), LDA, D, LDD )
            CALL DLASET( 'All', 2, 2, ZERO, ZERO, D(3,1), LDD )
            CALL DLACPY( 'Upper', 2, 2, G(N-1,N-1), LDG, D(1,3), LDD )
            D(2,3) = D(1,4)
            D(3,3) = -D(1,1)
            D(4,3) = -D(1,2)
            D(3,4) = -D(2,1)
            D(4,4) = -D(2,2)
            DNORM = DLANGE( 'Max', ND, ND, D, LDD, DWORK )
C
C           Compute machine-dependent threshold for test for accepting
C           swap.
C
            EPS = DLAMCH( 'P' )
            SMLNUM = DLAMCH( 'S' ) / EPS
            THRESH = MAX( FORTY*EPS*DNORM, SMLNUM )
C
C           Solve A11*X + X*A11' = scale*G11 for X.
C
            CALL DLASY2( .FALSE., .FALSE., -1, 2, 2, D, LDD, D(3,3),
     $                   LDD, D(1,3), LDD, SCALE, X, LDX, XNORM, IERR )
C
C           Compute symplectic QR decomposition of
C
C                  (  -X11  -X12 )
C                  (  -X21  -X22 ).
C                  ( scale    0  )
C                  (    0  scale )
C
            TEMP = -X(1,1)
            CALL DLARTG( TEMP, SCALE, V1(1), V2(1), X(1,1) )
            CALL DLARTG( X(1,1), -X(2,1), V1(2), V2(2), TEMP )
            X(1,2) = -X(1,2)
            X(2,2) = -X(2,2)
            X(1,1) = ZERO
            X(2,1) = SCALE
            CALL DROT( 1, X(1,2), 1, X(1,1), 1, V1(1), V2(1) )
            CALL DROT( 1, X(1,2), 1, X(2,2), 1, V1(2), V2(2) )
            CALL DROT( 1, X(1,1), 1, X(2,1), 1, V1(2), V2(2) )
            CALL DLARTG( X(2,2), X(2,1), V1(3), V2(3), TEMP )
C
C           Perform swap provisionally on D.
C
            CALL DROT( 4, D(1,1), LDD, D(3,1), LDD, V1(1), V2(1) )
            CALL DROT( 4, D(1,1), LDD, D(2,1), LDD, V1(2), V2(2) )
            CALL DROT( 4, D(3,1), LDD, D(4,1), LDD, V1(2), V2(2) )
            CALL DROT( 4, D(2,1), LDD, D(4,1), LDD, V1(3), V2(3) )
            CALL DROT( 4, D(1,1), 1, D(1,3), 1, V1(1), V2(1) )
            CALL DROT( 4, D(1,1), 1, D(1,2), 1, V1(2), V2(2) )
            CALL DROT( 4, D(1,3), 1, D(1,4), 1, V1(2), V2(2) )
            CALL DROT( 4, D(1,2), 1, D(1,4), 1, V1(3), V2(3) )
C
C           Test whether to reject swap.
C
            IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(4,1) ),
     $                ABS( D(4,2) ) ).GT.THRESH ) GO TO 50
C
            CALL DLACPY( 'All', 2, 2, D(1,1), LDD, A(N-1,N-1), LDA )
            CALL DLACPY( 'Upper', 2, 2, D(1,3), LDD, G(N-1,N-1), LDG )
C
            IF ( N.GT.2 ) THEN
               CALL DROT( N-2, A(1,N-1), 1, G(1,N-1), 1, V1(1), V2(1) )
               CALL DROT( N-2, A(1,N-1), 1, A(1,N), 1, V1(2), V2(2) )
               CALL DROT( N-2, G(1,N-1), 1, G(1,N), 1, V1(2), V2(2) )
               CALL DROT( N-2, A(1,N), 1, G(1,N), 1, V1(3), V2(3) )
            END IF
C
            IF ( WANTU ) THEN
               CALL DROT( N, U1(1,N-1), 1, U2(1,N-1), 1, V1(1), V2(1) )
               CALL DROT( N, U1(1,N-1), 1, U1(1,N), 1, V1(2), V2(2) )
               CALL DROT( N, U2(1,N-1), 1, U2(1,N), 1, V1(2), V2(2) )
               CALL DROT( N, U1(1,N), 1, U2(1,N), 1, V1(3), V2(3) )
            END IF
C
         ELSE
C
            IF ( ABS( A(N-1,N) ).GT.ABS( A(N,N-1) ) ) THEN
               TEMP = G(N-1,N)
               CALL DLARTG( TEMP, A(N-1,N), CS, SN, G(N-1,N) )
               SN = -SN
               CALL DROT(N-2, A(1,N), 1, G(1,N), 1, CS, SN )
C
               A(N-1,N) = -SN*A(N,N-1)
               TEMP = -CS*A(N,N-1)
               A(N,N-1) = G(N-1,N)
               G(N-1,N) = TEMP
               IF ( WANTU )
     $            CALL DROT( N, U1(1,N), 1, U2(1,N), 1, CS, SN )
               CALL DSWAP( N-2, A(1,N-1), 1, G(1,N-1), 1 )
               CALL DSCAL( N-2, -ONE, A(1,N-1), 1 )
               IF ( WANTU ) THEN
                  CALL DSWAP( N, U1(1,N-1), 1, U2(1,N-1), 1 )
                  CALL DSCAL( N, -ONE, U1(1,N-1), 1 )
               END IF
            ELSE
               TEMP = G(N-1,N)
               CALL DLARTG( TEMP, A(N,N-1), CS, SN, G(N-1,N) )
               CALL DROT( N-2, A(1,N-1), 1, G(1,N-1), 1, CS, SN )
               A(N,N-1) = -SN*A(N-1,N)
               A(N-1,N) = CS*A(N-1,N)
               IF ( WANTU )
     $            CALL DROT( N, U1(1,N-1), 1, U2(1,N-1), 1, CS, SN )
               CALL DSWAP( N-1, A(1,N), 1, G(1,N), 1 )
               CALL DSCAL( N-1, -ONE, A(1,N), 1 )
               IF ( WANTU ) THEN
                  CALL DSWAP( N, U1(1,N), 1, U2(1,N), 1 )
                  CALL DSCAL( N, -ONE, U1(1,N), 1 )
               END IF
            END IF
         END IF
C
C        Standardize new 2-by-2 block.
C
         CALL DLANV2( A(N-1,N-1), A(N-1,N), A(N,N-1),
     $                A(N,N), WR1, WI1, WR2, WI2, CS, SN )
         CALL DROT( N-2, A(1,N-1), 1, A(1,N), 1, CS, SN )
         IF ( ISHAM ) THEN
            TEMP = G(N-1,N)
            CALL DROT( N-1, G(1,N-1), 1, G(1,N), 1, CS, SN )
            TAU = CS*TEMP + SN*G(N,N)
            G(N,N) = CS*G(N,N) - SN*TEMP
            G(N-1,N-1) = CS*G(N-1,N-1) + SN*TAU
            CALL DROT( 1, G(N-1,N), LDG, G(N,N), LDG, CS, SN )
         ELSE
            CALL DROT( N-2, G(1,N-1), 1, G(1,N), 1, CS, SN )
         END IF
         IF ( WANTU ) THEN
            CALL DROT( N, U1(1,N-1), 1, U1(1,N), 1, CS, SN )
            CALL DROT( N, U2(1,N-1), 1, U2(1,N), 1, CS, SN )
         END IF
C
      ELSE IF ( N1.EQ.1 .AND. N2.EQ.1 ) THEN
C
C        Swap two 1-by-1 blocks.
C
         A11 = A(J1,J1)
         A22 = A(J2,J2)
C
C        Determine the transformation to perform the interchange.
C
         CALL DLARTG( A(J1,J2), A22-A11, CS, SN, TEMP )
C
C        Apply transformation to the matrix A.
C
         IF ( J3.LE.N )
     $      CALL DROT( N-J1-1, A(J1,J3), LDA, A(J2,J3), LDA, CS, SN )
         CALL DROT( J1-1, A(1,J1), 1, A(1,J2), 1, CS, SN )
C
         A(J1,J1) = A22
         A(J2,J2) = A11
C
C        Apply transformation to the matrix G.
C
         IF ( ISHAM ) THEN
            TEMP = G(J1,J2)
            CALL DROT( J1, G(1,J1), 1, G(1,J2), 1, CS, SN )
            TAU = CS*TEMP + SN*G(J2,J2)
            G(J2,J2) = CS*G(J2,J2) - SN*TEMP
            G(J1,J1) = CS*G(J1,J1) + SN*TAU
            CALL DROT( N-J1, G(J1,J2), LDG, G(J2,J2), LDG, CS, SN )
         ELSE
            IF ( N.GT.J1+1 )
     $         CALL DROT( N-J1-1, G(J1,J1+2), LDG, G(J2,J1+2), LDG, CS,
     $                    SN )
            CALL DROT( J1-1, G(1,J1), 1, G(1,J2), 1, CS, SN )
         END IF
         IF ( WANTU ) THEN
C
C           Accumulate transformation in the matrices U1 and U2.
C
            CALL DROT( N, U1(1,J1), 1, U1(1,J2), 1, CS, SN )
            CALL DROT( N, U2(1,J1), 1, U2(1,J2), 1, CS, SN )
         END IF
C
      ELSE
C
C        Swapping involves at least one 2-by-2 block.
C
C        Copy the diagonal block of order N1+N2 to the local array D
C        and compute its norm.
C
         ND = N1 + N2
         CALL DLACPY( 'Full', ND, ND, A(J1,J1), LDA, D, LDD )
         DNORM = DLANGE( 'Max', ND, ND, D, LDD, DWORK )
C
C        Compute machine-dependent threshold for test for accepting
C        swap.
C
         EPS = DLAMCH( 'P' )
         SMLNUM = DLAMCH( 'S' ) / EPS
         THRESH = MAX( THIRTY*EPS*DNORM, SMLNUM )
C
C        Solve A11*X - X*A22 = scale*A12 for X.
C
         CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
     $                D(N1+1,N1+1), LDD, D(1,N1+1), LDD, SCALE, X, LDX,
     $                XNORM, IERR )
C
C        Swap the adjacent diagonal blocks.
C
         K = N1 + N1 + N2 - 3
         GO TO ( 10, 20, 30 )K
C
   10    CONTINUE
C
C        N1 = 1, N2 = 2: generate elementary reflector H so that:
C
C        ( scale, X11, X12 ) H = ( 0, 0, * ).
C
         V(1) = SCALE
         V(2) = X(1,1)
         V(3) = X(1,2)
         CALL DLARFG( 3, V(3), V, 1, TAU )
         V(3) = ONE
         A11 = A(J1,J1)
C
C        Perform swap provisionally on diagonal block in D.
C
         CALL DLARFX( 'Left', 3, 3, V, TAU, D, LDD, DWORK )
         CALL DLARFX( 'Right', 3, 3, V, TAU, D, LDD, DWORK )
C
C        Test whether to reject swap.
C
         IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(3,3)-A11 ) )
     $        .GT.THRESH ) GO TO 50
C
C        Accept swap: apply transformation to the entire matrix A.
C
         CALL DLARFX( 'Left', 3, N-J1+1, V, TAU, A(J1,J1), LDA, DWORK )
         CALL DLARFX( 'Right', J2, 3, V, TAU, A(1,J1), LDA, DWORK )
C
         A(J3,J1) = ZERO
         A(J3,J2) = ZERO
         A(J3,J3) = A11
C
C        Apply transformation to G.
C
         IF ( ISHAM ) THEN
            CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
            CALL DSYMV( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
     $                  DWORK, 1 )
            TEMP = -HALF*TAU*DDOT( 3, DWORK, 1, V, 1 )
            CALL DAXPY( 3, TEMP, V, 1, DWORK, 1 )
            CALL DSYR2( 'Upper', 3, -ONE, V, 1, DWORK, 1,
     $                  G(J1,J1), LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
     $                      DWORK )
         ELSE
            CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
            CALL MB01MD( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
     $                   DWORK, 1 )
            CALL MB01ND( 'Upper', 3, ONE, V, 1, DWORK, 1, G(J1,J1),
     $                   LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
     $                      DWORK )
         END IF
C
         IF ( WANTU ) THEN
C
C           Accumulate transformation in the matrices U1 and U2.
C
            CALL DLARFX( 'R', N, 3, V, TAU, U1(1,J1), LDU1, DWORK )
            CALL DLARFX( 'R', N, 3, V, TAU, U2(1,J1), LDU2, DWORK )
         END IF
         GO TO 40
C
   20    CONTINUE
C
C        N1 = 2, N2 = 1: generate elementary reflector H so that:
C
C        H (  -X11 ) = ( * )
C          (  -X21 ) = ( 0 ).
C          ( scale ) = ( 0 )
C
         V(1) = -X(1,1)
         V(2) = -X(2,1)
         V(3) = SCALE
         CALL DLARFG( 3, V(1), V(2), 1, TAU )
         V(1) = ONE
         A33 = A(J3,J3)
C
C        Perform swap provisionally on diagonal block in D.
C
         CALL DLARFX( 'L', 3, 3, V, TAU, D, LDD, DWORK )
         CALL DLARFX( 'R', 3, 3, V, TAU, D, LDD, DWORK )
C
C        Test whether to reject swap.
C
         IF ( MAX( ABS( D(2,1) ), ABS( D(3,1) ), ABS( D(1,1)-A33 ) )
     $       .GT. THRESH ) GO TO 50
C
C        Accept swap: apply transformation to the entire matrix A.
C
         CALL DLARFX( 'Right', J3, 3, V, TAU, A(1,J1), LDA, DWORK )
         CALL DLARFX( 'Left', 3, N-J1, V, TAU, A(J1,J2), LDA, DWORK )
C
         A(J1,J1) = A33
         A(J2,J1) = ZERO
         A(J3,J1) = ZERO
C
C        Apply transformation to G.
C
         IF ( ISHAM ) THEN
            CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
            CALL DSYMV( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
     $                  DWORK, 1 )
            TEMP = -HALF*TAU*DDOT( 3, DWORK, 1, V, 1 )
            CALL DAXPY( 3, TEMP, V, 1, DWORK, 1 )
            CALL DSYR2( 'Upper', 3, -ONE, V, 1, DWORK, 1, G(J1,J1),
     $                  LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
     $                      DWORK )
         ELSE
            CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
            CALL MB01MD( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
     $                   DWORK, 1 )
            CALL MB01ND( 'Upper', 3, ONE, V, 1, DWORK, 1, G(J1,J1),
     $                   LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
     $                      DWORK )
         END IF
C
         IF ( WANTU ) THEN
C
C           Accumulate transformation in the matrices U1 and U2.
C
            CALL DLARFX( 'R', N, 3, V, TAU, U1(1,J1), LDU1, DWORK )
            CALL DLARFX( 'R', N, 3, V, TAU, U2(1,J1), LDU2, DWORK )
         END IF
         GO TO 40
C
   30    CONTINUE
C
C        N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
C        that:
C
C        H(2) H(1) (  -X11  -X12 ) = (  *  * )
C                  (  -X21  -X22 )   (  0  * ).
C                  ( scale    0  )   (  0  0 )
C                  (    0  scale )   (  0  0 )
C
         V1(1) = -X(1,1)
         V1(2) = -X(2,1)
         V1(3) = SCALE
         CALL DLARFG( 3, V1(1), V1(2), 1, TAU1 )
         V1(1) = ONE
C
         TEMP  = -TAU1*( X(1,2)+V1(2)*X(2,2) )
         V2(1) = -TEMP*V1(2) - X(2,2)
         V2(2) = -TEMP*V1(3)
         V2(3) = SCALE
         CALL DLARFG( 3, V2(1), V2(2), 1, TAU2 )
         V2(1) = ONE
C
C        Perform swap provisionally on diagonal block in D.
C
         CALL DLARFX( 'L', 3, 4, V1, TAU1, D, LDD, DWORK )
         CALL DLARFX( 'R', 4, 3, V1, TAU1, D, LDD, DWORK )
         CALL DLARFX( 'L', 3, 4, V2, TAU2, D(2,1), LDD, DWORK )
         CALL DLARFX( 'R', 4, 3, V2, TAU2, D(1,2), LDD, DWORK )
C
C        Test whether to reject swap.
C
         IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(4,1) ),
     $             ABS( D(4,2) ) ).GT.THRESH ) GO TO 50
C
C        Accept swap: apply transformation to the entire matrix A.
C
         CALL DLARFX( 'L', 3, N-J1+1, V1, TAU1, A(J1,J1), LDA, DWORK )
         CALL DLARFX( 'R', J4, 3, V1, TAU1, A(1,J1), LDA, DWORK )
         CALL DLARFX( 'L', 3, N-J1+1, V2, TAU2, A(J2,J1), LDA, DWORK )
         CALL DLARFX( 'R', J4, 3, V2, TAU2, A(1,J2), LDA, DWORK )
C
         A(J3,J1) = ZERO
         A(J3,J2) = ZERO
         A(J4,J1) = ZERO
         A(J4,J2) = ZERO
C
C        Apply transformation to G.
C
         IF ( ISHAM ) THEN
            CALL DLARFX( 'Right', J1-1, 3, V1, TAU1, G(1,J1), LDG,
     $                   DWORK )
            CALL DSYMV( 'Upper', 3, TAU1, G(J1,J1), LDG, V1, 1, ZERO,
     $                  DWORK, 1 )
            TEMP = -HALF*TAU1*DDOT( 3, DWORK, 1, V1, 1 )
            CALL DAXPY( 3, TEMP, V1, 1, DWORK, 1 )
            CALL DSYR2( 'Upper', 3, -ONE, V1, 1, DWORK, 1,
     $                  G(J1,J1), LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V1, TAU1, G(J1,J1+3),
     $                      LDG, DWORK )
C
            CALL DLARFX( 'Right', J2-1, 3, V2, TAU2, G(1,J2), LDG,
     $                   DWORK )
            CALL DSYMV( 'Upper', 3, TAU2, G(J2,J2), LDG, V2, 1, ZERO,
     $                  DWORK, 1 )
            TEMP = -HALF*TAU2*DDOT( 3, DWORK, 1, V2, 1 )
            CALL DAXPY( 3, TEMP, V2, 1, DWORK, 1 )
            CALL DSYR2( 'Upper', 3, -ONE, V2, 1, DWORK, 1, G(J2,J2),
     $                  LDG )
            IF ( N.GT.J2+2 )
     $         CALL DLARFX( 'Left', 3, N-J2-2, V2, TAU2, G(J2,J2+3),
     $                      LDG, DWORK )
         ELSE
            CALL DLARFX( 'Right', J1-1, 3, V1, TAU1, G(1,J1), LDG,
     $                   DWORK )
            CALL MB01MD( 'Upper', 3, TAU1, G(J1,J1), LDG, V1, 1, ZERO,
     $                   DWORK, 1 )
            CALL MB01ND( 'Upper', 3, ONE, V1, 1, DWORK, 1, G(J1,J1),
     $                   LDG )
            IF ( N.GT.J1+2 )
     $         CALL DLARFX( 'Left', 3, N-J1-2, V1, TAU1, G(J1,J1+3),
     $                      LDG, DWORK )
            CALL DLARFX( 'Right', J2-1, 3, V2, TAU2, G(1,J2), LDG,
     $                   DWORK )
            CALL MB01MD( 'Upper', 3, TAU2, G(J2,J2), LDG, V2, 1, ZERO,
     $                   DWORK, 1 )
            CALL MB01ND( 'Upper', 3, ONE, V2, 1, DWORK, 1, G(J2,J2),
     $                   LDG )
            IF ( N.GT.J2+2 )
     $         CALL DLARFX( 'Left', 3, N-J2-2, V2, TAU2, G(J2,J2+3),
     $                      LDG, DWORK )
         END IF
C
         IF ( WANTU ) THEN
C
C           Accumulate transformation in the matrices U1 and U2.
C
            CALL DLARFX( 'R', N, 3, V1, TAU1, U1(1,J1), LDU1, DWORK )
            CALL DLARFX( 'R', N, 3, V2, TAU2, U1(1,J2), LDU1, DWORK )
            CALL DLARFX( 'R', N, 3, V1, TAU1, U2(1,J1), LDU2, DWORK )
            CALL DLARFX( 'R', N, 3, V2, TAU2, U2(1,J2), LDU2, DWORK )
         END IF
C
   40    CONTINUE
C
         IF ( N2.EQ.2 ) THEN
C
C           Standardize new 2-by-2 block A11.
C
            CALL DLANV2( A(J1,J1), A(J1,J2), A(J2,J1), A(J2,J2), WR1,
     $                   WI1, WR2, WI2, CS, SN )
            CALL DROT( N-J1-1, A(J1,J1+2), LDA, A(J2,J1+2), LDA, CS,
     $                 SN )
            CALL DROT( J1-1, A(1,J1), 1, A(1,J2), 1, CS, SN )
            IF ( ISHAM ) THEN
               TEMP = G(J1,J2)
               CALL DROT( J1, G(1,J1), 1, G(1,J2), 1, CS, SN )
               TAU = CS*TEMP + SN*G(J2,J2)
               G(J2,J2) = CS*G(J2,J2) - SN*TEMP
               G(J1,J1) = CS*G(J1,J1) + SN*TAU
               CALL DROT( N-J1, G(J1,J2), LDG, G(J2,J2), LDG, CS, SN )
            ELSE
               IF ( N.GT.J1+1 )
     $            CALL DROT( N-J1-1, G(J1,J1+2), LDG, G(J2,J1+2), LDG,
     $                       CS, SN )
               CALL DROT( J1-1, G(1,J1), 1, G(1,J2), 1, CS, SN )
            END IF
            IF ( WANTU ) THEN
               CALL DROT( N, U1(1,J1), 1, U1(1,J2), 1, CS, SN )
               CALL DROT( N, U2(1,J1), 1, U2(1,J2), 1, CS, SN )
            END IF
         END IF
C
         IF ( N1.EQ.2 ) THEN
C
C           Standardize new 2-by-2 block A22.
C
            J3 = J1 + N2
            J4 = J3 + 1
            CALL DLANV2( A(J3,J3), A(J3,J4), A(J4,J3), A(J4,J4), WR1,
     $                   WI1, WR2, WI2, CS, SN )
            IF ( J3+2.LE.N )
     $         CALL DROT( N-J3-1, A(J3,J3+2), LDA, A(J4,J3+2), LDA, CS,
     $                    SN )
            CALL DROT( J3-1, A(1,J3), 1, A(1,J4), 1, CS, SN )
            IF ( ISHAM ) THEN
               TEMP = G(J3,J4)
               CALL DROT( J3, G(1,J3), 1, G(1,J4), 1, CS, SN )
               TAU = CS*TEMP + SN*G(J4,J4)
               G(J4,J4) = CS*G(J4,J4) - SN*TEMP
               G(J3,J3) = CS*G(J3,J3) + SN*TAU
               CALL DROT( N-J3, G(J3,J4), LDG, G(J4,J4), LDG, CS, SN )
            ELSE
               IF ( N.GT.J3+1 )
     $            CALL DROT( N-J3-1, G(J3,J3+2), LDG, G(J4,J3+2), LDG,
     $                       CS, SN )
               CALL DROT( J3-1, G(1,J3), 1, G(1,J4), 1, CS, SN )
            END IF
            IF ( WANTU ) THEN
               CALL DROT( N, U1(1,J3), 1, U1(1,J4), 1, CS, SN )
               CALL DROT( N, U2(1,J3), 1, U2(1,J4), 1, CS, SN )
            END IF
         END IF
C
      END IF
      RETURN
C
C     Exit with INFO = 1 if swap was rejected.
C
   50 CONTINUE
      INFO = 1
      RETURN
C *** Last line of MB03TS ***
      END