1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
SUBROUTINE MB03TS( ISHAM, WANTU, N, A, LDA, G, LDG, U1, LDU1, U2,
$ LDU2, J1, N1, N2, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To swap diagonal blocks A11 and A22 of order 1 or 2 in the upper
C quasi-triangular matrix A contained in a skew-Hamiltonian matrix
C
C [ A G ] T
C X = [ T ], G = -G,
C [ 0 A ]
C
C or in a Hamiltonian matrix
C
C [ A G ] T
C X = [ T ], G = G.
C [ 0 -A ]
C
C This routine is a modified version of the LAPACK subroutine
C DLAEX2.
C
C The matrix A must be in Schur canonical form (as returned by the
C LAPACK routine DHSEQR), that is, block upper triangular with
C 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
C its diagonal elements equal and its off-diagonal elements of
C opposite sign.
C
C ARGUMENTS
C
C Mode Parameters
C
C ISHAM LOGIGAL
C Specifies the type of X:
C = .TRUE.: X is a Hamiltonian matrix;
C = .FALSE.: X is a skew-Hamiltonian matrix.
C
C WANTU LOGIGAL
C = .TRUE.: update the matrices U1 and U2 containing the
C Schur vectors;
C = .FALSE.: do not update U1 and U2.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the upper quasi-triangular matrix A, in Schur
C canonical form.
C On exit, the leading N-by-N part of this array contains
C the reordered matrix A, again in Schur canonical form.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C On entry, the leading N-by-N part of this array must
C contain the upper triangular part of the symmetric
C matrix G, if ISHAM = .TRUE., or the strictly upper
C triangular part of the skew-symmetric matrix G, otherwise.
C The rest of this array is not referenced.
C On exit, the leading N-by-N part of this array contains
C the upper or strictly upper triangular part of the
C symmetric or skew-symmetric matrix G, respectively,
C updated by the orthogonal transformation which reorders A.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= MAX(1,N).
C
C U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C On entry, if WANTU = .TRUE., the leading N-by-N part of
C this array must contain the matrix U1.
C On exit, if WANTU = .TRUE., the leading N-by-N part of
C this array contains U1, postmultiplied by the orthogonal
C transformation which reorders A. See the description in
C the SLICOT subroutine MB03TD for further details.
C If WANTU = .FALSE., this array is not referenced.
C
C LDU1 INTEGER
C The leading dimension of the array U1.
C LDU1 >= MAX(1,N), if WANTU = .TRUE.;
C LDU1 >= 1, otherwise.
C
C U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C On entry, if WANTU = .TRUE., the leading N-by-N part of
C this array must contain the matrix U2.
C On exit, if WANTU = .TRUE., the leading N-by-N part of
C this array contains U2, postmultiplied by the orthogonal
C transformation which reorders A.
C If WANTU = .FALSE., this array is not referenced.
C
C LDU2 INTEGER
C The leading dimension of the array U2.
C LDU2 >= MAX(1,N), if WANTU = .TRUE.;
C LDU2 >= 1, otherwise.
C
C J1 (input) INTEGER
C The index of the first row of the first block A11.
C If J1+N1 < N, then A11 is swapped with the block starting
C at (J1+N1+1)-th diagonal element.
C If J1+N1 > N, then A11 is the last block in A and swapped
C with -A11', if ISHAM = .TRUE.,
C or A11', if ISHAM = .FALSE..
C
C N1 (input) INTEGER
C The order of the first block A11. N1 = 0, 1 or 2.
C
C N2 (input) INTEGER
C The order of the second block A22. N2 = 0, 1 or 2.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: the transformed matrix A would be too far from Schur
C form; the blocks are not swapped and A, G, U1 and
C U2 are unchanged.
C
C REFERENCES
C
C [1] Bai, Z., and Demmel, J.W.
C On swapping diagonal blocks in real Schur form.
C Linear Algebra Appl., 186, pp. 73-95, 1993.
C
C [2] Benner, P., Kressner, D., and Mehrmann, V.
C Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory,
C Algorithms and Applications. Techn. Report, TU Berlin, 2003.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, May 2008 (SLICOT version of the HAPACK routine DHAEX2).
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE, TWO, THIRTY, FORTY
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0, THIRTY = 3.0D+1,
$ FORTY = 4.0D+1 )
INTEGER LDD, LDX
PARAMETER ( LDD = 4, LDX = 2 )
C .. Scalar Arguments ..
LOGICAL ISHAM, WANTU
INTEGER INFO, J1, LDA, LDG, LDU1, LDU2, N, N1, N2
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), G(LDG,*), U1(LDU1,*),
$ U2(LDU2,*)
C .. Local Scalars ..
LOGICAL LBLK
INTEGER IERR, J2, J3, J4, K, ND
DOUBLE PRECISION A11, A22, A33, CS, DNORM, EPS, SCALE, SMLNUM,
$ SN, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
$ WR1, WR2, XNORM
C .. Local Arrays ..
DOUBLE PRECISION D(LDD,4), V(3), V1(3), V2(3), X(LDX,2)
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DLANGE
EXTERNAL DDOT, DLAMCH, DLANGE
C .. External Subroutines ..
EXTERNAL DAXPY, DLACPY, DLANV2, DLARFG, DLARFX, DLARTG,
$ DLASET, DLASY2, DROT, DSCAL, DSWAP, DSYMV,
$ DSYR2, MB01MD, MB01ND
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C
C .. Executable Statements ..
C
INFO = 0
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
$ RETURN
LBLK = ( J1+N1.GT.N )
C
J2 = J1 + 1
J3 = J1 + 2
J4 = J1 + 3
C
IF ( LBLK .AND. N1.EQ.1 ) THEN
C
IF ( ISHAM ) THEN
A11 = A(N,N)
CALL DLARTG( G(N,N), -TWO*A11, CS, SN, TEMP )
CALL DROT( N-1, A(1,N), 1, G(1,N), 1, CS, SN )
A(N,N) = -A11
IF ( WANTU )
$ CALL DROT( N, U1(1,N), 1, U2(1,N), 1, CS, SN )
ELSE
CALL DSWAP( N-1, A(1,N), 1, G(1,N), 1 )
CALL DSCAL( N-1, -ONE, A(1,N), 1 )
IF ( WANTU ) THEN
CALL DSWAP( N, U1(1,N), 1, U2(1,N), 1 )
CALL DSCAL( N, -ONE, U1(1,N), 1 )
END IF
END IF
C
ELSE IF ( LBLK .AND. N1.EQ.2 ) THEN
C
IF ( ISHAM ) THEN
C
C Reorder Hamiltonian matrix:
C
C [ A11 G11 ]
C [ T ].
C [ 0 -A11 ]
C
ND = 4
CALL DLACPY( 'Full', 2, 2, A(N-1,N-1), LDA, D, LDD )
CALL DLASET( 'All', 2, 2, ZERO, ZERO, D(3,1), LDD )
CALL DLACPY( 'Upper', 2, 2, G(N-1,N-1), LDG, D(1,3), LDD )
D(2,3) = D(1,4)
D(3,3) = -D(1,1)
D(4,3) = -D(1,2)
D(3,4) = -D(2,1)
D(4,4) = -D(2,2)
DNORM = DLANGE( 'Max', ND, ND, D, LDD, DWORK )
C
C Compute machine-dependent threshold for test for accepting
C swap.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
THRESH = MAX( FORTY*EPS*DNORM, SMLNUM )
C
C Solve A11*X + X*A11' = scale*G11 for X.
C
CALL DLASY2( .FALSE., .FALSE., -1, 2, 2, D, LDD, D(3,3),
$ LDD, D(1,3), LDD, SCALE, X, LDX, XNORM, IERR )
C
C Compute symplectic QR decomposition of
C
C ( -X11 -X12 )
C ( -X21 -X22 ).
C ( scale 0 )
C ( 0 scale )
C
TEMP = -X(1,1)
CALL DLARTG( TEMP, SCALE, V1(1), V2(1), X(1,1) )
CALL DLARTG( X(1,1), -X(2,1), V1(2), V2(2), TEMP )
X(1,2) = -X(1,2)
X(2,2) = -X(2,2)
X(1,1) = ZERO
X(2,1) = SCALE
CALL DROT( 1, X(1,2), 1, X(1,1), 1, V1(1), V2(1) )
CALL DROT( 1, X(1,2), 1, X(2,2), 1, V1(2), V2(2) )
CALL DROT( 1, X(1,1), 1, X(2,1), 1, V1(2), V2(2) )
CALL DLARTG( X(2,2), X(2,1), V1(3), V2(3), TEMP )
C
C Perform swap provisionally on D.
C
CALL DROT( 4, D(1,1), LDD, D(3,1), LDD, V1(1), V2(1) )
CALL DROT( 4, D(1,1), LDD, D(2,1), LDD, V1(2), V2(2) )
CALL DROT( 4, D(3,1), LDD, D(4,1), LDD, V1(2), V2(2) )
CALL DROT( 4, D(2,1), LDD, D(4,1), LDD, V1(3), V2(3) )
CALL DROT( 4, D(1,1), 1, D(1,3), 1, V1(1), V2(1) )
CALL DROT( 4, D(1,1), 1, D(1,2), 1, V1(2), V2(2) )
CALL DROT( 4, D(1,3), 1, D(1,4), 1, V1(2), V2(2) )
CALL DROT( 4, D(1,2), 1, D(1,4), 1, V1(3), V2(3) )
C
C Test whether to reject swap.
C
IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(4,1) ),
$ ABS( D(4,2) ) ).GT.THRESH ) GO TO 50
C
CALL DLACPY( 'All', 2, 2, D(1,1), LDD, A(N-1,N-1), LDA )
CALL DLACPY( 'Upper', 2, 2, D(1,3), LDD, G(N-1,N-1), LDG )
C
IF ( N.GT.2 ) THEN
CALL DROT( N-2, A(1,N-1), 1, G(1,N-1), 1, V1(1), V2(1) )
CALL DROT( N-2, A(1,N-1), 1, A(1,N), 1, V1(2), V2(2) )
CALL DROT( N-2, G(1,N-1), 1, G(1,N), 1, V1(2), V2(2) )
CALL DROT( N-2, A(1,N), 1, G(1,N), 1, V1(3), V2(3) )
END IF
C
IF ( WANTU ) THEN
CALL DROT( N, U1(1,N-1), 1, U2(1,N-1), 1, V1(1), V2(1) )
CALL DROT( N, U1(1,N-1), 1, U1(1,N), 1, V1(2), V2(2) )
CALL DROT( N, U2(1,N-1), 1, U2(1,N), 1, V1(2), V2(2) )
CALL DROT( N, U1(1,N), 1, U2(1,N), 1, V1(3), V2(3) )
END IF
C
ELSE
C
IF ( ABS( A(N-1,N) ).GT.ABS( A(N,N-1) ) ) THEN
TEMP = G(N-1,N)
CALL DLARTG( TEMP, A(N-1,N), CS, SN, G(N-1,N) )
SN = -SN
CALL DROT(N-2, A(1,N), 1, G(1,N), 1, CS, SN )
C
A(N-1,N) = -SN*A(N,N-1)
TEMP = -CS*A(N,N-1)
A(N,N-1) = G(N-1,N)
G(N-1,N) = TEMP
IF ( WANTU )
$ CALL DROT( N, U1(1,N), 1, U2(1,N), 1, CS, SN )
CALL DSWAP( N-2, A(1,N-1), 1, G(1,N-1), 1 )
CALL DSCAL( N-2, -ONE, A(1,N-1), 1 )
IF ( WANTU ) THEN
CALL DSWAP( N, U1(1,N-1), 1, U2(1,N-1), 1 )
CALL DSCAL( N, -ONE, U1(1,N-1), 1 )
END IF
ELSE
TEMP = G(N-1,N)
CALL DLARTG( TEMP, A(N,N-1), CS, SN, G(N-1,N) )
CALL DROT( N-2, A(1,N-1), 1, G(1,N-1), 1, CS, SN )
A(N,N-1) = -SN*A(N-1,N)
A(N-1,N) = CS*A(N-1,N)
IF ( WANTU )
$ CALL DROT( N, U1(1,N-1), 1, U2(1,N-1), 1, CS, SN )
CALL DSWAP( N-1, A(1,N), 1, G(1,N), 1 )
CALL DSCAL( N-1, -ONE, A(1,N), 1 )
IF ( WANTU ) THEN
CALL DSWAP( N, U1(1,N), 1, U2(1,N), 1 )
CALL DSCAL( N, -ONE, U1(1,N), 1 )
END IF
END IF
END IF
C
C Standardize new 2-by-2 block.
C
CALL DLANV2( A(N-1,N-1), A(N-1,N), A(N,N-1),
$ A(N,N), WR1, WI1, WR2, WI2, CS, SN )
CALL DROT( N-2, A(1,N-1), 1, A(1,N), 1, CS, SN )
IF ( ISHAM ) THEN
TEMP = G(N-1,N)
CALL DROT( N-1, G(1,N-1), 1, G(1,N), 1, CS, SN )
TAU = CS*TEMP + SN*G(N,N)
G(N,N) = CS*G(N,N) - SN*TEMP
G(N-1,N-1) = CS*G(N-1,N-1) + SN*TAU
CALL DROT( 1, G(N-1,N), LDG, G(N,N), LDG, CS, SN )
ELSE
CALL DROT( N-2, G(1,N-1), 1, G(1,N), 1, CS, SN )
END IF
IF ( WANTU ) THEN
CALL DROT( N, U1(1,N-1), 1, U1(1,N), 1, CS, SN )
CALL DROT( N, U2(1,N-1), 1, U2(1,N), 1, CS, SN )
END IF
C
ELSE IF ( N1.EQ.1 .AND. N2.EQ.1 ) THEN
C
C Swap two 1-by-1 blocks.
C
A11 = A(J1,J1)
A22 = A(J2,J2)
C
C Determine the transformation to perform the interchange.
C
CALL DLARTG( A(J1,J2), A22-A11, CS, SN, TEMP )
C
C Apply transformation to the matrix A.
C
IF ( J3.LE.N )
$ CALL DROT( N-J1-1, A(J1,J3), LDA, A(J2,J3), LDA, CS, SN )
CALL DROT( J1-1, A(1,J1), 1, A(1,J2), 1, CS, SN )
C
A(J1,J1) = A22
A(J2,J2) = A11
C
C Apply transformation to the matrix G.
C
IF ( ISHAM ) THEN
TEMP = G(J1,J2)
CALL DROT( J1, G(1,J1), 1, G(1,J2), 1, CS, SN )
TAU = CS*TEMP + SN*G(J2,J2)
G(J2,J2) = CS*G(J2,J2) - SN*TEMP
G(J1,J1) = CS*G(J1,J1) + SN*TAU
CALL DROT( N-J1, G(J1,J2), LDG, G(J2,J2), LDG, CS, SN )
ELSE
IF ( N.GT.J1+1 )
$ CALL DROT( N-J1-1, G(J1,J1+2), LDG, G(J2,J1+2), LDG, CS,
$ SN )
CALL DROT( J1-1, G(1,J1), 1, G(1,J2), 1, CS, SN )
END IF
IF ( WANTU ) THEN
C
C Accumulate transformation in the matrices U1 and U2.
C
CALL DROT( N, U1(1,J1), 1, U1(1,J2), 1, CS, SN )
CALL DROT( N, U2(1,J1), 1, U2(1,J2), 1, CS, SN )
END IF
C
ELSE
C
C Swapping involves at least one 2-by-2 block.
C
C Copy the diagonal block of order N1+N2 to the local array D
C and compute its norm.
C
ND = N1 + N2
CALL DLACPY( 'Full', ND, ND, A(J1,J1), LDA, D, LDD )
DNORM = DLANGE( 'Max', ND, ND, D, LDD, DWORK )
C
C Compute machine-dependent threshold for test for accepting
C swap.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
THRESH = MAX( THIRTY*EPS*DNORM, SMLNUM )
C
C Solve A11*X - X*A22 = scale*A12 for X.
C
CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
$ D(N1+1,N1+1), LDD, D(1,N1+1), LDD, SCALE, X, LDX,
$ XNORM, IERR )
C
C Swap the adjacent diagonal blocks.
C
K = N1 + N1 + N2 - 3
GO TO ( 10, 20, 30 )K
C
10 CONTINUE
C
C N1 = 1, N2 = 2: generate elementary reflector H so that:
C
C ( scale, X11, X12 ) H = ( 0, 0, * ).
C
V(1) = SCALE
V(2) = X(1,1)
V(3) = X(1,2)
CALL DLARFG( 3, V(3), V, 1, TAU )
V(3) = ONE
A11 = A(J1,J1)
C
C Perform swap provisionally on diagonal block in D.
C
CALL DLARFX( 'Left', 3, 3, V, TAU, D, LDD, DWORK )
CALL DLARFX( 'Right', 3, 3, V, TAU, D, LDD, DWORK )
C
C Test whether to reject swap.
C
IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(3,3)-A11 ) )
$ .GT.THRESH ) GO TO 50
C
C Accept swap: apply transformation to the entire matrix A.
C
CALL DLARFX( 'Left', 3, N-J1+1, V, TAU, A(J1,J1), LDA, DWORK )
CALL DLARFX( 'Right', J2, 3, V, TAU, A(1,J1), LDA, DWORK )
C
A(J3,J1) = ZERO
A(J3,J2) = ZERO
A(J3,J3) = A11
C
C Apply transformation to G.
C
IF ( ISHAM ) THEN
CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
CALL DSYMV( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
$ DWORK, 1 )
TEMP = -HALF*TAU*DDOT( 3, DWORK, 1, V, 1 )
CALL DAXPY( 3, TEMP, V, 1, DWORK, 1 )
CALL DSYR2( 'Upper', 3, -ONE, V, 1, DWORK, 1,
$ G(J1,J1), LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
$ DWORK )
ELSE
CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
CALL MB01MD( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
$ DWORK, 1 )
CALL MB01ND( 'Upper', 3, ONE, V, 1, DWORK, 1, G(J1,J1),
$ LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
$ DWORK )
END IF
C
IF ( WANTU ) THEN
C
C Accumulate transformation in the matrices U1 and U2.
C
CALL DLARFX( 'R', N, 3, V, TAU, U1(1,J1), LDU1, DWORK )
CALL DLARFX( 'R', N, 3, V, TAU, U2(1,J1), LDU2, DWORK )
END IF
GO TO 40
C
20 CONTINUE
C
C N1 = 2, N2 = 1: generate elementary reflector H so that:
C
C H ( -X11 ) = ( * )
C ( -X21 ) = ( 0 ).
C ( scale ) = ( 0 )
C
V(1) = -X(1,1)
V(2) = -X(2,1)
V(3) = SCALE
CALL DLARFG( 3, V(1), V(2), 1, TAU )
V(1) = ONE
A33 = A(J3,J3)
C
C Perform swap provisionally on diagonal block in D.
C
CALL DLARFX( 'L', 3, 3, V, TAU, D, LDD, DWORK )
CALL DLARFX( 'R', 3, 3, V, TAU, D, LDD, DWORK )
C
C Test whether to reject swap.
C
IF ( MAX( ABS( D(2,1) ), ABS( D(3,1) ), ABS( D(1,1)-A33 ) )
$ .GT. THRESH ) GO TO 50
C
C Accept swap: apply transformation to the entire matrix A.
C
CALL DLARFX( 'Right', J3, 3, V, TAU, A(1,J1), LDA, DWORK )
CALL DLARFX( 'Left', 3, N-J1, V, TAU, A(J1,J2), LDA, DWORK )
C
A(J1,J1) = A33
A(J2,J1) = ZERO
A(J3,J1) = ZERO
C
C Apply transformation to G.
C
IF ( ISHAM ) THEN
CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
CALL DSYMV( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
$ DWORK, 1 )
TEMP = -HALF*TAU*DDOT( 3, DWORK, 1, V, 1 )
CALL DAXPY( 3, TEMP, V, 1, DWORK, 1 )
CALL DSYR2( 'Upper', 3, -ONE, V, 1, DWORK, 1, G(J1,J1),
$ LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
$ DWORK )
ELSE
CALL DLARFX( 'Right', J1-1, 3, V, TAU, G(1,J1), LDG, DWORK )
CALL MB01MD( 'Upper', 3, TAU, G(J1,J1), LDG, V, 1, ZERO,
$ DWORK, 1 )
CALL MB01ND( 'Upper', 3, ONE, V, 1, DWORK, 1, G(J1,J1),
$ LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V, TAU, G(J1,J1+3), LDG,
$ DWORK )
END IF
C
IF ( WANTU ) THEN
C
C Accumulate transformation in the matrices U1 and U2.
C
CALL DLARFX( 'R', N, 3, V, TAU, U1(1,J1), LDU1, DWORK )
CALL DLARFX( 'R', N, 3, V, TAU, U2(1,J1), LDU2, DWORK )
END IF
GO TO 40
C
30 CONTINUE
C
C N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
C that:
C
C H(2) H(1) ( -X11 -X12 ) = ( * * )
C ( -X21 -X22 ) ( 0 * ).
C ( scale 0 ) ( 0 0 )
C ( 0 scale ) ( 0 0 )
C
V1(1) = -X(1,1)
V1(2) = -X(2,1)
V1(3) = SCALE
CALL DLARFG( 3, V1(1), V1(2), 1, TAU1 )
V1(1) = ONE
C
TEMP = -TAU1*( X(1,2)+V1(2)*X(2,2) )
V2(1) = -TEMP*V1(2) - X(2,2)
V2(2) = -TEMP*V1(3)
V2(3) = SCALE
CALL DLARFG( 3, V2(1), V2(2), 1, TAU2 )
V2(1) = ONE
C
C Perform swap provisionally on diagonal block in D.
C
CALL DLARFX( 'L', 3, 4, V1, TAU1, D, LDD, DWORK )
CALL DLARFX( 'R', 4, 3, V1, TAU1, D, LDD, DWORK )
CALL DLARFX( 'L', 3, 4, V2, TAU2, D(2,1), LDD, DWORK )
CALL DLARFX( 'R', 4, 3, V2, TAU2, D(1,2), LDD, DWORK )
C
C Test whether to reject swap.
C
IF ( MAX( ABS( D(3,1) ), ABS( D(3,2) ), ABS( D(4,1) ),
$ ABS( D(4,2) ) ).GT.THRESH ) GO TO 50
C
C Accept swap: apply transformation to the entire matrix A.
C
CALL DLARFX( 'L', 3, N-J1+1, V1, TAU1, A(J1,J1), LDA, DWORK )
CALL DLARFX( 'R', J4, 3, V1, TAU1, A(1,J1), LDA, DWORK )
CALL DLARFX( 'L', 3, N-J1+1, V2, TAU2, A(J2,J1), LDA, DWORK )
CALL DLARFX( 'R', J4, 3, V2, TAU2, A(1,J2), LDA, DWORK )
C
A(J3,J1) = ZERO
A(J3,J2) = ZERO
A(J4,J1) = ZERO
A(J4,J2) = ZERO
C
C Apply transformation to G.
C
IF ( ISHAM ) THEN
CALL DLARFX( 'Right', J1-1, 3, V1, TAU1, G(1,J1), LDG,
$ DWORK )
CALL DSYMV( 'Upper', 3, TAU1, G(J1,J1), LDG, V1, 1, ZERO,
$ DWORK, 1 )
TEMP = -HALF*TAU1*DDOT( 3, DWORK, 1, V1, 1 )
CALL DAXPY( 3, TEMP, V1, 1, DWORK, 1 )
CALL DSYR2( 'Upper', 3, -ONE, V1, 1, DWORK, 1,
$ G(J1,J1), LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V1, TAU1, G(J1,J1+3),
$ LDG, DWORK )
C
CALL DLARFX( 'Right', J2-1, 3, V2, TAU2, G(1,J2), LDG,
$ DWORK )
CALL DSYMV( 'Upper', 3, TAU2, G(J2,J2), LDG, V2, 1, ZERO,
$ DWORK, 1 )
TEMP = -HALF*TAU2*DDOT( 3, DWORK, 1, V2, 1 )
CALL DAXPY( 3, TEMP, V2, 1, DWORK, 1 )
CALL DSYR2( 'Upper', 3, -ONE, V2, 1, DWORK, 1, G(J2,J2),
$ LDG )
IF ( N.GT.J2+2 )
$ CALL DLARFX( 'Left', 3, N-J2-2, V2, TAU2, G(J2,J2+3),
$ LDG, DWORK )
ELSE
CALL DLARFX( 'Right', J1-1, 3, V1, TAU1, G(1,J1), LDG,
$ DWORK )
CALL MB01MD( 'Upper', 3, TAU1, G(J1,J1), LDG, V1, 1, ZERO,
$ DWORK, 1 )
CALL MB01ND( 'Upper', 3, ONE, V1, 1, DWORK, 1, G(J1,J1),
$ LDG )
IF ( N.GT.J1+2 )
$ CALL DLARFX( 'Left', 3, N-J1-2, V1, TAU1, G(J1,J1+3),
$ LDG, DWORK )
CALL DLARFX( 'Right', J2-1, 3, V2, TAU2, G(1,J2), LDG,
$ DWORK )
CALL MB01MD( 'Upper', 3, TAU2, G(J2,J2), LDG, V2, 1, ZERO,
$ DWORK, 1 )
CALL MB01ND( 'Upper', 3, ONE, V2, 1, DWORK, 1, G(J2,J2),
$ LDG )
IF ( N.GT.J2+2 )
$ CALL DLARFX( 'Left', 3, N-J2-2, V2, TAU2, G(J2,J2+3),
$ LDG, DWORK )
END IF
C
IF ( WANTU ) THEN
C
C Accumulate transformation in the matrices U1 and U2.
C
CALL DLARFX( 'R', N, 3, V1, TAU1, U1(1,J1), LDU1, DWORK )
CALL DLARFX( 'R', N, 3, V2, TAU2, U1(1,J2), LDU1, DWORK )
CALL DLARFX( 'R', N, 3, V1, TAU1, U2(1,J1), LDU2, DWORK )
CALL DLARFX( 'R', N, 3, V2, TAU2, U2(1,J2), LDU2, DWORK )
END IF
C
40 CONTINUE
C
IF ( N2.EQ.2 ) THEN
C
C Standardize new 2-by-2 block A11.
C
CALL DLANV2( A(J1,J1), A(J1,J2), A(J2,J1), A(J2,J2), WR1,
$ WI1, WR2, WI2, CS, SN )
CALL DROT( N-J1-1, A(J1,J1+2), LDA, A(J2,J1+2), LDA, CS,
$ SN )
CALL DROT( J1-1, A(1,J1), 1, A(1,J2), 1, CS, SN )
IF ( ISHAM ) THEN
TEMP = G(J1,J2)
CALL DROT( J1, G(1,J1), 1, G(1,J2), 1, CS, SN )
TAU = CS*TEMP + SN*G(J2,J2)
G(J2,J2) = CS*G(J2,J2) - SN*TEMP
G(J1,J1) = CS*G(J1,J1) + SN*TAU
CALL DROT( N-J1, G(J1,J2), LDG, G(J2,J2), LDG, CS, SN )
ELSE
IF ( N.GT.J1+1 )
$ CALL DROT( N-J1-1, G(J1,J1+2), LDG, G(J2,J1+2), LDG,
$ CS, SN )
CALL DROT( J1-1, G(1,J1), 1, G(1,J2), 1, CS, SN )
END IF
IF ( WANTU ) THEN
CALL DROT( N, U1(1,J1), 1, U1(1,J2), 1, CS, SN )
CALL DROT( N, U2(1,J1), 1, U2(1,J2), 1, CS, SN )
END IF
END IF
C
IF ( N1.EQ.2 ) THEN
C
C Standardize new 2-by-2 block A22.
C
J3 = J1 + N2
J4 = J3 + 1
CALL DLANV2( A(J3,J3), A(J3,J4), A(J4,J3), A(J4,J4), WR1,
$ WI1, WR2, WI2, CS, SN )
IF ( J3+2.LE.N )
$ CALL DROT( N-J3-1, A(J3,J3+2), LDA, A(J4,J3+2), LDA, CS,
$ SN )
CALL DROT( J3-1, A(1,J3), 1, A(1,J4), 1, CS, SN )
IF ( ISHAM ) THEN
TEMP = G(J3,J4)
CALL DROT( J3, G(1,J3), 1, G(1,J4), 1, CS, SN )
TAU = CS*TEMP + SN*G(J4,J4)
G(J4,J4) = CS*G(J4,J4) - SN*TEMP
G(J3,J3) = CS*G(J3,J3) + SN*TAU
CALL DROT( N-J3, G(J3,J4), LDG, G(J4,J4), LDG, CS, SN )
ELSE
IF ( N.GT.J3+1 )
$ CALL DROT( N-J3-1, G(J3,J3+2), LDG, G(J4,J3+2), LDG,
$ CS, SN )
CALL DROT( J3-1, G(1,J3), 1, G(1,J4), 1, CS, SN )
END IF
IF ( WANTU ) THEN
CALL DROT( N, U1(1,J3), 1, U1(1,J4), 1, CS, SN )
CALL DROT( N, U2(1,J3), 1, U2(1,J4), 1, CS, SN )
END IF
END IF
C
END IF
RETURN
C
C Exit with INFO = 1 if swap was rejected.
C
50 CONTINUE
INFO = 1
RETURN
C *** Last line of MB03TS ***
END
|