1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
SUBROUTINE MB03VD( N, P, ILO, IHI, A, LDA1, LDA2, TAU, LDTAU,
$ DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce a product of p real general matrices A = A_1*A_2*...*A_p
C to upper Hessenberg form, H = H_1*H_2*...*H_p, where H_1 is
C upper Hessenberg, and H_2, ..., H_p are upper triangular, by using
C orthogonal similarity transformations on A,
C
C Q_1' * A_1 * Q_2 = H_1,
C Q_2' * A_2 * Q_3 = H_2,
C ...
C Q_p' * A_p * Q_1 = H_p.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the square matrices A_1, A_2, ..., A_p.
C N >= 0.
C
C P (input) INTEGER
C The number of matrices in the product A_1*A_2*...*A_p.
C P >= 1.
C
C ILO (input) INTEGER
C IHI (input) INTEGER
C It is assumed that all matrices A_j, j = 2, ..., p, are
C already upper triangular in rows and columns 1:ILO-1 and
C IHI+1:N, and A_1 is upper Hessenberg in rows and columns
C 1:ILO-1 and IHI+1:N, with A_1(ILO,ILO-1) = 0 (unless
C ILO = 1), and A_1(IHI+1,IHI) = 0 (unless IHI = N).
C If this is not the case, ILO and IHI should be set to 1
C and N, respectively.
C 1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C A (input/output) DOUBLE PRECISION array, dimension
C (LDA1,LDA2,P)
C On entry, the leading N-by-N-by-P part of this array must
C contain the matrices of factors to be reduced;
C specifically, A(*,*,j) must contain A_j, j = 1, ..., p.
C On exit, the leading N-by-N upper triangle and the first
C subdiagonal of A(*,*,1) contain the upper Hessenberg
C matrix H_1, and the elements below the first subdiagonal,
C with the first column of the array TAU represent the
C orthogonal matrix Q_1 as a product of elementary
C reflectors. See FURTHER COMMENTS.
C For j > 1, the leading N-by-N upper triangle of A(*,*,j)
C contains the upper triangular matrix H_j, and the elements
C below the diagonal, with the j-th column of the array TAU
C represent the orthogonal matrix Q_j as a product of
C elementary reflectors. See FURTHER COMMENTS.
C
C LDA1 INTEGER
C The first leading dimension of the array A.
C LDA1 >= max(1,N).
C
C LDA2 INTEGER
C The second leading dimension of the array A.
C LDA2 >= max(1,N).
C
C TAU (output) DOUBLE PRECISION array, dimension (LDTAU,P)
C The leading N-1 elements in the j-th column contain the
C scalar factors of the elementary reflectors used to form
C the matrix Q_j, j = 1, ..., P. See FURTHER COMMENTS.
C
C LDTAU INTEGER
C The leading dimension of the array TAU.
C LDTAU >= max(1,N-1).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The algorithm consists in ihi-ilo major steps. In each such
C step i, ilo <= i <= ihi-1, the subdiagonal elements in the i-th
C column of A_j are annihilated using a Householder transformation
C from the left, which is also applied to A_(j-1) from the right,
C for j = p:-1:2. Then, the elements below the subdiagonal of the
C i-th column of A_1 are annihilated, and the Householder
C transformation is also applied to A_p from the right.
C See FURTHER COMMENTS.
C
C REFERENCES
C
C [1] Bojanczyk, A.W., Golub, G. and Van Dooren, P.
C The periodic Schur decomposition: algorithms and applications.
C Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C 1992.
C
C [2] Sreedhar, J. and Van Dooren, P.
C Periodic Schur form and some matrix equations.
C Proc. of the Symposium on the Mathematical Theory of Networks
C and Systems (MTNS'93), Regensburg, Germany (U. Helmke,
C R. Mennicken and J. Saurer, Eds.), Vol. 1, pp. 339-362, 1994.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically stable.
C
C FURTHER COMMENTS
C
C Each matrix Q_j is represented as a product of (ihi-ilo)
C elementary reflectors,
C
C Q_j = H_j(ilo) H_j(ilo+1) . . . H_j(ihi-1).
C
C Each H_j(i), i = ilo, ..., ihi-1, has the form
C
C H_j(i) = I - tau_j * v_j * v_j',
C
C where tau_j is a real scalar, and v_j is a real vector with
C v_j(1:i) = 0, v_j(i+1) = 1 and v_j(ihi+1:n) = 0; v_j(i+2:ihi)
C is stored on exit in A_j(i+2:ihi,i), and tau_j in TAU(i,j).
C
C The contents of A_1 are illustrated by the following example
C for n = 7, ilo = 2, and ihi = 6:
C
C on entry on exit
C
C ( a a a a a a a ) ( a h h h h h a )
C ( 0 a a a a a a ) ( 0 h h h h h a )
C ( 0 a a a a a a ) ( 0 h h h h h h )
C ( 0 a a a a a a ) ( 0 v2 h h h h h )
C ( 0 a a a a a a ) ( 0 v2 v3 h h h h )
C ( 0 a a a a a a ) ( 0 v2 v3 v4 h h h )
C ( 0 0 0 0 0 0 a ) ( 0 0 0 0 0 0 a )
C
C where a denotes an element of the original matrix A_1, h denotes
C a modified element of the upper Hessenberg matrix H_1, and vi
C denotes an element of the vector defining H_1(i).
C
C The contents of A_j, j > 1, are illustrated by the following
C example for n = 7, ilo = 2, and ihi = 6:
C
C on entry on exit
C
C ( a a a a a a a ) ( a h h h h h a )
C ( 0 a a a a a a ) ( 0 h h h h h h )
C ( 0 a a a a a a ) ( 0 v2 h h h h h )
C ( 0 a a a a a a ) ( 0 v2 v3 h h h h )
C ( 0 a a a a a a ) ( 0 v2 v3 v4 h h h )
C ( 0 a a a a a a ) ( 0 v2 v3 v4 v5 h h )
C ( 0 0 0 0 0 0 a ) ( 0 0 0 0 0 0 a )
C
C where a denotes an element of the original matrix A_j, h denotes
C a modified element of the upper triangular matrix H_j, and vi
C denotes an element of the vector defining H_j(i). (The element
C (1,2) in A_p is also unchanged for this example.)
C
C Note that for P = 1, the LAPACK Library routine DGEHRD could be
C more efficient on some computer architectures than this routine
C (a BLAS 2 version).
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, and A. Varga,
C German Aerospace Center, DLR Oberpfaffenhofen, February 1999.
C Partly based on the routine PSHESS by A. Varga
C (DLR Oberpfaffenhofen), November 26, 1995.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, periodic systems,
C similarity transformation, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA1, LDA2, LDTAU, N, P
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA1, LDA2, * ), DWORK( * ), TAU( LDTAU, * )
C ..
C .. Local Scalars ..
INTEGER I, I1, I2, J, NH
C ..
C .. Local Arrays ..
DOUBLE PRECISION DUMMY( 1 )
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DLARFG, MB04PY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( P.LT.1 ) THEN
INFO = -2
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -4
ELSE IF( LDA1.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDA2.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDTAU.LT.MAX( 1, N-1 ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03VD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
NH = IHI - ILO + 1
IF ( NH.LE.1 )
$ RETURN
C
DUMMY( 1 ) = ZERO
C
DO 20 I = ILO, IHI - 1
I1 = I + 1
I2 = MIN( I+2, N )
C
DO 10 J = P, 2, -1
C
C Set the elements 1:ILO-1 and IHI:N-1 of TAU(*,J) to zero.
C
CALL DCOPY( ILO-1, DUMMY, 0, TAU( 1, J ), 1 )
IF ( IHI.LT.N )
$ CALL DCOPY( N-IHI, DUMMY, 0, TAU( IHI, J ), 1 )
C
C Compute elementary reflector H_j(i) to annihilate
C A_j(i+1:ihi,i).
C
CALL DLARFG( IHI-I+1, A( I, I, J ), A( I1, I, J ), 1,
$ TAU( I, J ) )
C
C Apply H_j(i) to A_(j-1)(1:ihi,i:ihi) from the right.
C
CALL MB04PY( 'Right', IHI, IHI-I+1, A( I1, I, J ),
$ TAU( I, J ), A( 1, I, J-1 ), LDA1, DWORK )
C
C Apply H_j(i) to A_j(i:ihi,i+1:n) from the left.
C
CALL MB04PY( 'Left', IHI-I+1, N-I, A( I1, I, J ),
$ TAU( I, J ), A( I, I1, J ), LDA1, DWORK )
10 CONTINUE
C
C Compute elementary reflector H_1(i) to annihilate
C A_1(i+2:ihi,i).
C
CALL DLARFG( IHI-I, A( I1, I, 1 ), A( I2, I, 1 ), 1,
$ TAU( I, 1 ) )
C
C Apply H_1(i) to A_p(1:ihi,i+1:ihi) from the right.
C
CALL MB04PY( 'Right', IHI, IHI-I, A( I2, I, 1 ), TAU( I, 1 ),
$ A( 1, I1, P ), LDA1, DWORK )
C
C Apply H_1(i) to A_1(i+1:ihi,i+1:n) from the left.
C
CALL MB04PY( 'Left', IHI-I, N-I, A( I2, I, 1 ), TAU( I, 1 ),
$ A( I1, I1, 1 ), LDA1, DWORK )
20 CONTINUE
C
RETURN
C
C *** Last line of MB03VD ***
END
|