File: MB03WD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (966 lines) | stat: -rw-r--r-- 33,510 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
      SUBROUTINE MB03WD( JOB, COMPZ, N, P, ILO, IHI, ILOZ, IHIZ, H,
     $                   LDH1, LDH2, Z, LDZ1, LDZ2, WR, WI, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the Schur decomposition and the eigenvalues of a
C     product of matrices, H = H_1*H_2*...*H_p, with H_1 an upper
C     Hessenberg matrix and H_2, ..., H_p upper triangular matrices,
C     without evaluating the product. Specifically, the matrices Z_i
C     are computed, such that
C
C             Z_1' * H_1 * Z_2 = T_1,
C             Z_2' * H_2 * Z_3 = T_2,
C                    ...
C             Z_p' * H_p * Z_1 = T_p,
C
C     where T_1 is in real Schur form, and T_2, ..., T_p are upper
C     triangular.
C
C     The routine works primarily with the Hessenberg and triangular
C     submatrices in rows and columns ILO to IHI, but optionally applies
C     the transformations to all the rows and columns of the matrices
C     H_i, i = 1,...,p. The transformations can be optionally
C     accumulated.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Indicates whether the user wishes to compute the full
C             Schur form or the eigenvalues only, as follows:
C             = 'E':  Compute the eigenvalues only;
C             = 'S':  Compute the factors T_1, ..., T_p of the full
C                     Schur form, T = T_1*T_2*...*T_p.
C
C     COMPZ   CHARACTER*1
C             Indicates whether or not the user wishes to accumulate
C             the matrices Z_1, ..., Z_p, as follows:
C             = 'N':  The matrices Z_1, ..., Z_p are not required;
C             = 'I':  Z_i is initialized to the unit matrix and the
C                     orthogonal transformation matrix Z_i is returned,
C                     i = 1, ..., p;
C             = 'V':  Z_i must contain an orthogonal matrix Q_i on
C                     entry, and the product Q_i*Z_i is returned,
C                     i = 1, ..., p.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix H.  N >= 0.
C
C     P       (input) INTEGER
C             The number of matrices in the product H_1*H_2*...*H_p.
C             P >= 1.
C
C     ILO     (input) INTEGER
C     IHI     (input) INTEGER
C             It is assumed that all matrices H_j, j = 2, ..., p, are
C             already upper triangular in rows and columns 1:ILO-1 and
C             IHI+1:N, and H_1 is upper quasi-triangular in rows and
C             columns 1:ILO-1 and IHI+1:N, with H_1(ILO,ILO-1) = 0
C             (unless ILO = 1), and H_1(IHI+1,IHI) = 0 (unless IHI = N).
C             The routine works primarily with the Hessenberg submatrix
C             in rows and columns ILO to IHI, but applies the
C             transformations to all the rows and columns of the
C             matrices H_i, i = 1,...,p, if JOB = 'S'.
C             1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C     ILOZ    (input) INTEGER
C     IHIZ    (input) INTEGER
C             Specify the rows of Z to which the transformations must be
C             applied if COMPZ = 'I' or COMPZ = 'V'.
C             1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
C
C     H       (input/output) DOUBLE PRECISION array, dimension
C             (LDH1,LDH2,P)
C             On entry, the leading N-by-N part of H(*,*,1) must contain
C             the upper Hessenberg matrix H_1 and the leading N-by-N
C             part of H(*,*,j) for j > 1 must contain the upper
C             triangular matrix H_j, j = 2, ..., p.
C             On exit, if JOB = 'S', the leading N-by-N part of H(*,*,1)
C             is upper quasi-triangular in rows and columns ILO:IHI,
C             with any 2-by-2 diagonal blocks corresponding to a pair of
C             complex conjugated eigenvalues, and the leading N-by-N
C             part of H(*,*,j) for j > 1 contains the resulting upper
C             triangular matrix T_j.
C             If JOB = 'E', the contents of H are unspecified on exit.
C
C     LDH1    INTEGER
C             The first leading dimension of the array H.
C             LDH1 >= max(1,N).
C
C     LDH2    INTEGER
C             The second leading dimension of the array H.
C             LDH2 >= max(1,N).
C
C     Z       (input/output) DOUBLE PRECISION array, dimension
C             (LDZ1,LDZ2,P)
C             On entry, if COMPZ = 'V', the leading N-by-N-by-P part of
C             this array must contain the current matrix Q of
C             transformations accumulated by SLICOT Library routine
C             MB03VY.
C             If COMPZ = 'I', Z need not be set on entry.
C             On exit, if COMPZ = 'V', or COMPZ = 'I', the leading
C             N-by-N-by-P part of this array contains the transformation
C             matrices which produced the Schur form; the
C             transformations are applied only to the submatrices
C             Z_j(ILOZ:IHIZ,ILO:IHI), j = 1, ..., P.
C             If COMPZ = 'N', Z is not referenced.
C
C     LDZ1    INTEGER
C             The first leading dimension of the array Z.
C             LDZ1 >= 1,        if COMPZ = 'N';
C             LDZ1 >= max(1,N), if COMPZ = 'I' or COMPZ = 'V'.
C
C     LDZ2    INTEGER
C             The second leading dimension of the array Z.
C             LDZ2 >= 1,        if COMPZ = 'N';
C             LDZ2 >= max(1,N), if COMPZ = 'I' or COMPZ = 'V'.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             The real and imaginary parts, respectively, of the
C             computed eigenvalues ILO to IHI are stored in the
C             corresponding elements of WR and WI. If two eigenvalues
C             are computed as a complex conjugate pair, they are stored
C             in consecutive elements of WR and WI, say the i-th and
C             (i+1)th, with WI(i) > 0 and WI(i+1) < 0. If JOB = 'S', the
C             eigenvalues are stored in the same order as on the
C             diagonal of the Schur form returned in H.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION work array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= IHI-ILO+P-1.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, ILO <= i <= IHI, the QR algorithm
C                   failed to compute all the eigenvalues ILO to IHI
C                   in a total of 30*(IHI-ILO+1) iterations;
C                   the elements i+1:IHI of WR and WI contain those
C                   eigenvalues which have been successfully computed.
C
C     METHOD
C
C     A refined version of the QR algorithm proposed in [1] and [2] is
C     used. The elements of the subdiagonal, diagonal, and the first
C     supradiagonal of current principal submatrix of H are computed
C     in the process.
C
C     REFERENCES
C
C     [1] Bojanczyk, A.W., Golub, G. and Van Dooren, P.
C         The periodic Schur decomposition: algorithms and applications.
C         Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C         1992.
C
C     [2] Sreedhar, J. and Van Dooren, P.
C         Periodic Schur form and some matrix equations.
C         Proc. of the Symposium on the Mathematical Theory of Networks
C         and Systems (MTNS'93), Regensburg, Germany (U. Helmke,
C         R. Mennicken and J. Saurer, Eds.), Vol. 1, pp. 339-362, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically stable.
C
C     FURTHER COMMENTS
C
C     Note that for P = 1, the LAPACK Library routine DHSEQR could be
C     more efficient on some computer architectures than this routine,
C     because DHSEQR uses a block multishift QR algorithm.
C     When P is large and JOB = 'S', it could be more efficient to
C     compute the product matrix H, and use the LAPACK Library routines.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, and A. Varga,
C     German Aerospace Center, DLR Oberpfaffenhofen, February 1999.
C     Partly based on the routine PSHQR by A. Varga
C     (DLR Oberpfaffenhofen), January 22, 1996.
C
C     REVISIONS
C
C     Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C
C     KEYWORDS
C
C     Eigenvalue, eigenvalue decomposition, Hessenberg form,
C     orthogonal transformation, periodic systems, (periodic) Schur
C     form, real Schur form, similarity transformation, triangular form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, HALF
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
      DOUBLE PRECISION  DAT1, DAT2
      PARAMETER         ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER         COMPZ, JOB
      INTEGER           IHI, IHIZ, ILO, ILOZ, INFO, LDH1, LDH2, LDWORK,
     $                  LDZ1, LDZ2, N, P
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK( * ), H( LDH1, LDH2, * ), WI( * ),
     $                  WR( * ), Z( LDZ1, LDZ2, * )
C     ..
C     .. Local Scalars ..
      LOGICAL           INITZ, WANTT, WANTZ
      INTEGER           I, I1, I2, ITN, ITS, J, JMAX, JMIN, K, L, M,
     $                  NH, NR, NROW, NZ
      DOUBLE PRECISION  AVE, CS, DISC, H11, H12, H21, H22, H33, H33S,
     $                  H43H34, H44, H44S, HH10, HH11, HH12, HH21, HH22,
     $                  HP00, HP01, HP02, HP11, HP12, HP22, OVFL, S,
     $                  SMLNUM, SN, TAU, TST1, ULP, UNFL, V1, V2, V3
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION  V( 3 )
C     ..
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANHS, DLANTR
      EXTERNAL          DLAMCH, DLANHS, DLANTR, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLABAD, DLANV2, DLARFG, DLARFX, DLARTG,
     $                  DLASET, DROT, MB04PY, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MIN, SIGN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      WANTT = LSAME( JOB,   'S' )
      INITZ = LSAME( COMPZ, 'I' )
      WANTZ = LSAME( COMPZ, 'V' ) .OR. INITZ
      INFO = 0
      IF( .NOT. ( WANTT .OR. LSAME( JOB, 'E' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( WANTZ .OR. LSAME( COMPZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.1 ) THEN
         INFO = -4
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -6
      ELSE IF( ILOZ.LT.1 .OR. ILOZ.GT.ILO ) THEN
         INFO = -7
      ELSE IF( IHIZ.LT.IHI .OR. IHIZ.GT.N ) THEN
         INFO = -8
      ELSE IF( LDH1.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDH2.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDZ1.LT.1 .OR. ( WANTZ .AND. LDZ1.LT.N ) ) THEN
         INFO = -13
      ELSE IF( LDZ2.LT.1 .OR. ( WANTZ .AND. LDZ2.LT.N ) ) THEN
         INFO = -14
      ELSE IF( LDWORK.LT.IHI - ILO + P - 1 ) THEN
         INFO = -18
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( ILO.GT.1 ) THEN
            IF( H( ILO, ILO-1, 1 ).NE.ZERO )
     $         INFO = -5
         ELSE IF( IHI.LT.N ) THEN
            IF( H( IHI+1, IHI, 1 ).NE.ZERO )
     $         INFO = -6
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03WD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
C
C     Initialize Z, if necessary.
C
      IF( INITZ ) THEN
C
         DO 10 J = 1, P
            CALL DLASET( 'Full', N, N, ZERO, ONE, Z( 1, 1, J ), LDZ1 )
   10    CONTINUE
C
      END IF
C
      NH = IHI - ILO + 1
C
      IF( NH.EQ.1 ) THEN
         HP00 = ONE
C
         DO 20 J = 1, P
            HP00 = HP00 * H( ILO, ILO, J )
   20    CONTINUE
C
         WR( ILO ) = HP00
         WI( ILO ) = ZERO
         RETURN
      END IF
C
C     Set machine-dependent constants for the stopping criterion.
C     If norm(H) <= sqrt(OVFL), overflow should not occur.
C
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( DBLE( NH ) / ULP )
C
C     Set the elements in rows and columns ILO to IHI to zero below the
C     first subdiagonal in H(*,*,1) and below the first diagonal in
C     H(*,*,j), j >= 2. In the same loop, compute and store in
C     DWORK(NH:NH+P-2) the 1-norms of the matrices H_2, ..., H_p, to be
C     used later.
C
      I = NH
      S = ULP * DBLE( N )
      IF( NH.GT.2 )
     $   CALL DLASET( 'Lower', NH-2, NH-2, ZERO, ZERO,
     $                H( ILO+2, ILO, 1 ), LDH1 )
C
      DO 30 J = 2, P
         CALL DLASET( 'Lower', NH-1, NH-1, ZERO, ZERO,
     $                H( ILO+1, ILO, J ), LDH1 )
         DWORK( I ) = S * DLANTR( '1-norm', 'Upper', 'NonUnit', NH, NH,
     $                            H( ILO, ILO, J ), LDH1, DWORK )
         I = I + 1
   30 CONTINUE
C
C     I1 and I2 are the indices of the first row and last column of H
C     to which transformations must be applied. If eigenvalues only are
C     being computed, I1 and I2 are set inside the main loop.
C
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
C
      IF( WANTZ )
     $   NZ = IHIZ - ILOZ + 1
C
C     ITN is the total number of QR iterations allowed.
C
      ITN = 30*NH
C
C     The main loop begins here. I is the loop index and decreases from
C     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
C     with the active submatrix in rows and columns L to I.
C     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
C     H(L,L-1) is negligible so that the matrix splits.
C
      I = IHI
C
   40 CONTINUE
      L = ILO
C
C     Perform QR iterations on rows and columns ILO to I until a
C     submatrix of order 1 or 2 splits off at the bottom because a
C     subdiagonal element has become negligible.
C
C     Let T = H_2*...*H_p, and H = H_1*T. Part of the currently
C     free locations of WR and WI are temporarily used as workspace.
C
C     WR(L:I):      the current diagonal elements of h = H(L:I,L:I);
C     WI(L+1:I):    the current elements of the first subdiagonal of h;
C     DWORK(NH-I+L:NH-1): the current elements of the first
C                   supradiagonal of h.
C
      DO 160 ITS = 0, ITN
C
C        Initialization: compute H(I,I) (and H(I,I-1) if I > L).
C
         HP22 = ONE
         IF( I.GT.L ) THEN
            HP12 = ZERO
            HP11 = ONE
C
            DO 50 J = 2, P
               HP22 = HP22*H( I,   I,   J )
               HP12 = HP11*H( I-1, I,   J ) + HP12*H( I, I, J )
               HP11 = HP11*H( I-1, I-1, J )
   50       CONTINUE
C
            HH21 = H( I, I-1, 1 )*HP11
            HH22 = H( I, I-1, 1 )*HP12 + H( I, I, 1 )*HP22
C
            WR( I ) = HH22
            WI( I ) = HH21
         ELSE
C
            DO 60 J = 1, P
               HP22 = HP22*H( I, I, J )
   60       CONTINUE
C
            WR( I ) = HP22
         END IF
C
C        Look for a single small subdiagonal element.
C        The loop also computes the needed current elements of the
C        diagonal and the first two supradiagonals of T, as well as
C        the current elements of the central tridiagonal of H.
C
         DO 80 K = I, L + 1, -1
C
C           Evaluate H(K-1,K-1), H(K-1,K) (and H(K-1,K-2) if K > L+1).
C
            HP00 = ONE
            HP01 = ZERO
            IF( K.GT.L+1 ) THEN
               HP02 = ZERO
C
               DO 70 J = 2, P
                  HP02 = HP00*H( K-2, K,   J ) + HP01*H( K-1, K,   J )
     $                                         + HP02*H( K,   K,   J )
                  HP01 = HP00*H( K-2, K-1, J ) + HP01*H( K-1, K-1, J )
                  HP00 = HP00*H( K-2, K-2, J )
   70          CONTINUE
C
               HH10 = H( K-1, K-2, 1 )*HP00
               HH11 = H( K-1, K-2, 1 )*HP01 + H( K-1, K-1, 1 )*HP11
               HH12 = H( K-1, K-2, 1 )*HP02 + H( K-1, K-1, 1 )*HP12
     $                                      + H( K-1, K,   1 )*HP22
               WI( K-1 ) = HH10
            ELSE
               HH10 = ZERO
               HH11 = H( K-1, K-1, 1 )*HP11
               HH12 = H( K-1, K-1, 1 )*HP12 + H( K-1, K, 1 )*HP22
            END IF
            WR( K-1 ) = HH11
            DWORK( NH-I+K-1) = HH12
C
C           Test for a negligible subdiagonal element.
C
            TST1 = ABS( HH11 ) + ABS( HH22 )
            IF( TST1.EQ.ZERO )
     $         TST1 = DLANHS( '1-norm', I-L+1, H( L, L, 1 ), LDH1,
     $                        DWORK )
            IF( ABS( HH21 ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 90
C
C           Update the values for the next cycle.
C
            HP22 = HP11
            HP11 = HP00
            HP12 = HP01
            HH22 = HH11
            HH21 = HH10
   80    CONTINUE
C
   90    CONTINUE
         L = K
C
         IF( L.GT.ILO ) THEN
C
C           H(L,L-1) is negligible.
C
            IF( WANTT ) THEN
C
C              If H(L,L-1,1) is also negligible, set it to 0; otherwise,
C              annihilate the subdiagonal elements bottom-up, and
C              restore the triangular form of H(*,*,j). Since H(L,L-1)
C              is negligible, the second case can only appear when the
C              product of H(L-1,L-1,j), j >= 2, is negligible.
C
               TST1 = ABS( H( L-1, L-1, 1 ) ) + ABS( H( L, L, 1 ) )
               IF( TST1.EQ.ZERO )
     $            TST1 = DLANHS( '1-norm', I-L+1, H( L, L, 1 ), LDH1,
     $                           DWORK )
               IF( ABS( H( L, L-1, 1 ) ).GT.MAX( ULP*TST1, SMLNUM ) )
     $            THEN
C
                  DO 110 K = I, L, -1
C
                     DO 100 J = 1, P - 1
C
C                       Compute G to annihilate from the right the
C                       (K,K-1) element of the matrix H_j.
C
                        V( 1 ) = H( K, K-1, J )
                        CALL DLARFG( 2, H( K, K, J ), V, 1, TAU )
                        H( K, K-1, J ) = ZERO
                        V( 2 ) = ONE
C
C                       Apply G from the right to transform the columns
C                       of the matrix H_j in rows I1 to K-1.
C
                        CALL DLARFX( 'Right', K-I1, 2, V, TAU,
     $                               H( I1, K-1, J ), LDH1, DWORK )
C
C                       Apply G from the left to transform the rows of
C                       the matrix H_(j+1) in columns K-1 to I2.
C
                        CALL DLARFX( 'Left', 2, I2-K+2, V, TAU,
     $                               H( K-1, K-1, J+1 ), LDH1, DWORK )
C
                        IF( WANTZ ) THEN
C
C                          Accumulate transformations in the matrix
C                          Z_(j+1).
C
                           CALL DLARFX( 'Right', NZ, 2, V, TAU,
     $                                  Z( ILOZ, K-1, J+1 ), LDZ1,
     $                                  DWORK )
                        END IF
  100                CONTINUE
C
                     IF( K.LT.I ) THEN
C
C                       Compute G to annihilate from the right the
C                       (K+1,K) element of the matrix H_p.
C
                        V( 1 ) = H( K+1, K, P )
                        CALL DLARFG( 2, H( K+1, K+1, P ), V, 1, TAU )
                        H( K+1, K, P ) = ZERO
                        V( 2 ) = ONE
C
C                       Apply G from the right to transform the columns
C                       of the matrix H_p in rows I1 to K.
C
                        CALL DLARFX( 'Right', K-I1+1, 2, V, TAU,
     $                               H( I1, K, P ), LDH1, DWORK )
C
C                       Apply G from the left to transform the rows of
C                       the matrix H_1 in columns K to I2.
C
                        CALL DLARFX( 'Left', 2, I2-K+1, V, TAU,
     $                               H( K, K, 1 ), LDH1, DWORK )
C
                        IF( WANTZ ) THEN
C
C                          Accumulate transformations in the matrix Z_1.
C
                           CALL DLARFX( 'Right', NZ, 2, V, TAU,
     $                                  Z( ILOZ, K, 1 ), LDZ1, DWORK )
                        END IF
                     END IF
  110             CONTINUE
C
                  H( L, L-1, P ) = ZERO
               END IF
               H( L, L-1, 1 ) = ZERO
            END IF
         END IF
C
C        Exit from loop if a submatrix of order 1 or 2 has split off.
C
         IF( L.GE.I-1 )
     $      GO TO 170
C
C        Now the active submatrix is in rows and columns L to I. If
C        eigenvalues only are being computed, only the active submatrix
C        need be transformed.
C
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
C
         IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
C
C           Exceptional shift.
C
            S   = ABS( WI( I ) ) + ABS( WI( I-1 ) )
            H44 = DAT1*S + WR( I )
            H33 = H44
            H43H34 = DAT2*S*S
         ELSE
C
C           Prepare to use Francis' double shift (i.e., second degree
C           generalized Rayleigh quotient).
C
            H44 = WR( I )
            H33 = WR( I-1 )
            H43H34 = WI( I )*DWORK( NH-1 )
            DISC = ( H33 - H44 )*HALF
            DISC = DISC*DISC + H43H34
            IF( DISC.GT.ZERO ) THEN
C
C              Real roots: use Wilkinson's shift twice.
C
               DISC = SQRT( DISC )
               AVE  = HALF*( H33 + H44 )
               IF( ABS( H33 )-ABS( H44 ).GT.ZERO ) THEN
                  H33 = H33*H44 - H43H34
                  H44 = H33 / ( SIGN( DISC, AVE ) + AVE )
               ELSE
                  H44 = SIGN( DISC, AVE ) + AVE
               END IF
               H33 = H44
               H43H34 = ZERO
            END IF
         END IF
C
C        Look for two consecutive small subdiagonal elements.
C
         DO 120 M = I - 2, L, -1
C
C           Determine the effect of starting the double-shift QR
C           iteration at row M, and see if this would make H(M,M-1)
C           negligible.
C
            H11  = WR( M )
            H12  = DWORK( NH-I+M )
            H21  = WI( M+1 )
            H22  = WR( M+1 )
            H44S = H44 - H11
            H33S = H33 - H11
            V1   = ( H33S*H44S - H43H34 ) / H21 + H12
            V2   = H22 - H11 - H33S - H44S
            V3   = WI( M+2 )
            S    = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
            V1   = V1 / S
            V2   = V2 / S
            V3   = V3 / S
            V( 1 ) = V1
            V( 2 ) = V2
            V( 3 ) = V3
            IF( M.EQ.L )
     $         GO TO 130
            TST1 = ABS( V1 )*( ABS( WR( M-1 ) ) +
     $                         ABS( H11 ) + ABS( H22 ) )
            IF( ABS( WI( M ) )*( ABS( V2 ) + ABS( V3 ) ).LE.ULP*TST1 )
     $         GO TO 130
  120    CONTINUE
C
  130    CONTINUE
C
C        Double-shift QR step.
C
         DO 150 K = M, I - 1
C
C           The first iteration of this loop determines a reflection G
C           from the vector V and applies it from left and right to H,
C           thus creating a nonzero bulge below the subdiagonal.
C
C           Each subsequent iteration determines a reflection G to
C           restore the Hessenberg form in the (K-1)th column, and thus
C           chases the bulge one step toward the bottom of the active
C           submatrix. NR is the order of G.
C
            NR   = MIN( 3, I-K+1 )
            NROW = MIN( K+NR, I ) - I1 + 1
            IF( K.GT.M )
     $         CALL DCOPY( NR, H( K, K-1, 1 ), 1, V, 1 )
            CALL DLARFG( NR, V( 1 ), V( 2 ), 1, TAU )
            IF( K.GT.M ) THEN
               H( K,   K-1, 1 ) = V( 1 )
               H( K+1, K-1, 1 ) = ZERO
               IF( K.LT.I-1 )
     $            H( K+2, K-1, 1 ) = ZERO
            ELSE IF( M.GT.L ) THEN
               H( K, K-1, 1 ) = -H( K, K-1, 1 )
            END IF
C
C           Apply G from the left to transform the rows of the matrix
C           H_1 in columns K to I2.
C
            CALL MB04PY( 'Left', NR, I2-K+1, V( 2 ), TAU, H( K, K, 1 ),
     $                   LDH1, DWORK )
C
C           Apply G from the right to transform the columns of the
C           matrix H_p in rows I1 to min(K+NR,I).
C
            CALL MB04PY( 'Right', NROW, NR, V( 2 ), TAU, H( I1, K, P ),
     $                   LDH1, DWORK )
C
            IF( WANTZ ) THEN
C
C              Accumulate transformations in the matrix Z_1.
C
               CALL MB04PY( 'Right', NZ, NR, V( 2 ), TAU,
     $                      Z( ILOZ, K, 1 ), LDZ1, DWORK )
            END IF
C
            DO 140 J = P, 2, -1
C
C              Apply G1 (and G2, if NR = 3) from the left to transform
C              the NR-by-NR submatrix of H_j in position (K,K) to upper
C              triangular form.
C
C              Compute G1.
C
               CALL DCOPY( NR-1, H( K+1, K, J ), 1, V, 1 )
               CALL DLARFG( NR, H( K, K, J ), V, 1, TAU )
               H( K+1, K, J ) = ZERO
               IF( NR.EQ.3 )
     $            H( K+2, K, J ) = ZERO
C
C              Apply G1 from the left to transform the rows of the
C              matrix H_j in columns K+1 to I2.
C
               CALL MB04PY( 'Left', NR, I2-K, V, TAU, H( K, K+1, J ),
     $                      LDH1, DWORK )
C
C              Apply G1 from the right to transform the columns of the
C              matrix H_(j-1) in rows I1 to min(K+NR,I).
C
               CALL MB04PY( 'Right', NROW, NR, V, TAU, H( I1, K, J-1 ),
     $                      LDH1, DWORK )
C
               IF( WANTZ ) THEN
C
C                 Accumulate transformations in the matrix Z_j.
C
                  CALL MB04PY( 'Right', NZ, NR, V, TAU, Z( ILOZ, K, J ),
     $                         LDZ1, DWORK )
               END IF
C
               IF( NR.EQ.3 ) THEN
C
C                 Compute G2.
C
                  V( 1 ) = H( K+2, K+1, J )
                  CALL DLARFG( 2, H( K+1, K+1, J ), V, 1, TAU )
                  H( K+2, K+1, J ) = ZERO
C
C                 Apply G2 from the left to transform the rows of the
C                 matrix H_j in columns K+2 to I2.
C
                  CALL MB04PY( 'Left', 2, I2-K-1, V, TAU,
     $                         H( K+1, K+2, J ), LDH1, DWORK )
C
C                 Apply G2 from the right to transform the columns of
C                 the matrix H_(j-1) in rows I1 to min(K+3,I).
C
                  CALL MB04PY( 'Right', NROW, 2, V, TAU,
     $                         H( I1, K+1, J-1 ), LDH1, DWORK )
C
                  IF( WANTZ ) THEN
C
C                    Accumulate transformations in the matrix Z_j.
C
                     CALL MB04PY( 'Right', NZ, 2, V, TAU,
     $                            Z( ILOZ, K+1, J ), LDZ1, DWORK )
                  END IF
               END IF
  140       CONTINUE
C
  150    CONTINUE
C
  160 CONTINUE
C
C     Failure to converge in remaining number of iterations.
C
      INFO = I
      RETURN
C
  170 CONTINUE
C
      IF( L.EQ.I ) THEN
C
C        H(I,I-1,1) is negligible: one eigenvalue has converged.
C        Note that WR(I) has already been set.
C
         WI( I ) = ZERO
      ELSE IF( L.EQ.I-1 ) THEN
C
C        H(I-1,I-2,1) is negligible: a pair of eigenvalues have
C        converged.
C
C        Transform the 2-by-2 submatrix of H_1*H_2*...*H_p in position
C        (I-1,I-1) to standard Schur form, and compute and store its
C        eigenvalues. If the Schur form is not required, then the
C        previously stored values of a similar submatrix are used.
C        For real eigenvalues, a Givens transformation is used to
C        triangularize the submatrix.
C
         IF( WANTT ) THEN
            HP22 = ONE
            HP12 = ZERO
            HP11 = ONE
C
            DO 180 J = 2, P
               HP22 = HP22*H( I,   I,   J )
               HP12 = HP11*H( I-1, I,   J ) + HP12*H( I, I, J )
               HP11 = HP11*H( I-1, I-1, J )
  180       CONTINUE
C
            HH21 = H( I,   I-1, 1 )*HP11
            HH22 = H( I,   I-1, 1 )*HP12 + H( I,   I, 1 )*HP22
            HH11 = H( I-1, I-1, 1 )*HP11
            HH12 = H( I-1, I-1, 1 )*HP12 + H( I-1, I, 1 )*HP22
         ELSE
            HH11 = WR( I-1 )
            HH12 = DWORK( NH-1 )
            HH21 = WI( I )
            HH22 = WR( I )
         END IF
C
         CALL DLANV2( HH11, HH12, HH21, HH22, WR( I-1 ), WI( I-1 ),
     $                WR( I ), WI( I ), CS, SN )
C
         IF( WANTT ) THEN
C
C           Detect negligible diagonal elements in positions (I-1,I-1)
C           and (I,I) in H_j, J > 1.
C
            JMIN = 0
            JMAX = 0
C
            DO 190 J = 2, P
               IF( JMIN.EQ.0 ) THEN
                  IF( ABS( H( I-1, I-1, J ) ).LE.DWORK( NH+J-2 ) )
     $                JMIN = J
               END IF
               IF( ABS( H( I, I, J ) ).LE.DWORK( NH+J-2 ) ) JMAX = J
  190       CONTINUE
C
            IF( JMIN.NE.0 .AND. JMAX.NE.0 ) THEN
C
C              Choose the shorter path if zero elements in both
C              (I-1,I-1) and (I,I) positions are present.
C
               IF( JMIN-1.LE.P-JMAX+1 ) THEN
                  JMAX = 0
               ELSE
                  JMIN = 0
               END IF
            END IF
C
            IF( JMIN.NE.0 ) THEN
C
               DO 200 J = 1, JMIN - 1
C
C                 Compute G to annihilate from the right the (I,I-1)
C                 element of the matrix H_j.
C
                  V( 1 ) = H( I, I-1, J )
                  CALL DLARFG( 2, H( I, I, J ), V, 1, TAU )
                  H( I, I-1, J ) = ZERO
                  V( 2 ) = ONE
C
C                 Apply G from the right to transform the columns of the
C                 matrix H_j in rows I1 to I-1.
C
                  CALL DLARFX( 'Right', I-I1, 2, V, TAU,
     $                         H( I1, I-1, J ), LDH1, DWORK )
C
C                 Apply G from the left to transform the rows of the
C                 matrix H_(j+1) in columns I-1 to I2.
C
                  CALL DLARFX( 'Left', 2, I2-I+2, V, TAU,
     $                         H( I-1, I-1, J+1 ), LDH1, DWORK )
C
                  IF( WANTZ ) THEN
C
C                    Accumulate transformations in the matrix Z_(j+1).
C
                     CALL DLARFX( 'Right', NZ, 2, V, TAU,
     $                            Z( ILOZ, I-1, J+1 ), LDZ1, DWORK )
                  END IF
  200          CONTINUE
C
               H( I, I-1, JMIN ) = ZERO
C
            ELSE
               IF( JMAX.GT.0 .AND. WI( I-1 ).EQ.ZERO )
     $            CALL DLARTG( H( I-1, I-1, 1 ), H( I, I-1, 1 ), CS, SN,
     $                         TAU )
C
C              Apply the transformation to H.
C
               CALL DROT( I2-I+2, H( I-1, I-1, 1 ), LDH1,
     $                    H( I, I-1, 1 ), LDH1, CS, SN )
               CALL DROT( I-I1+1, H( I1, I-1, P ), 1, H( I1, I, P ), 1,
     $                    CS, SN )
               IF( WANTZ ) THEN
C
C                 Apply transformation to Z_1.
C
                  CALL DROT( NZ, Z( ILOZ, I-1, 1 ), 1, Z( ILOZ, I, 1 ),
     $                       1, CS, SN )
               END IF
C
               DO 210 J = P, MAX( 2, JMAX+1 ), -1
C
C                 Compute G1 to annihilate from the left the (I,I-1)
C                 element of the matrix H_j.
C
                  V( 1 ) = H( I, I-1, J )
                  CALL DLARFG( 2, H( I-1, I-1, J ), V, 1, TAU )
                  H( I, I-1, J ) = ZERO
C
C                 Apply G1 from the left to transform the rows of the
C                 matrix H_j in columns I to I2.
C
                  CALL MB04PY( 'Left', 2, I2-I+1, V, TAU,
     $                         H( I-1, I, J ), LDH1, DWORK )
C
C                 Apply G1 from the right to transform the columns of
C                 the matrix H_(j-1) in rows I1 to I.
C
                  CALL MB04PY( 'Right', I-I1+1, 2, V, TAU,
     $                         H( I1, I-1, J-1 ), LDH1, DWORK )
C
                  IF( WANTZ ) THEN
C
C                    Apply G1 to Z_j.
C
                     CALL MB04PY( 'Right', NZ, 2, V, TAU,
     $                            Z( ILOZ, I-1, J ), LDZ1, DWORK )
                  END IF
  210          CONTINUE
C
               IF( JMAX.GT.0 ) THEN
                  H( I, I-1, 1 )    = ZERO
                  H( I, I-1, JMAX ) = ZERO
               ELSE
                  IF( HH21.EQ.ZERO )
     $               H( I, I-1, 1 ) = ZERO
               END IF
            END IF
         END IF
      END IF
C
C     Decrement number of remaining iterations, and return to start of
C     the main loop with new value of I.
C
      ITN = ITN - ITS
      I = L - 1
      IF( I.GE.ILO )
     $   GO TO 40
C
      RETURN
C
C *** Last line of MB03WD ***
      END