1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
SUBROUTINE MB03WD( JOB, COMPZ, N, P, ILO, IHI, ILOZ, IHIZ, H,
$ LDH1, LDH2, Z, LDZ1, LDZ2, WR, WI, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the Schur decomposition and the eigenvalues of a
C product of matrices, H = H_1*H_2*...*H_p, with H_1 an upper
C Hessenberg matrix and H_2, ..., H_p upper triangular matrices,
C without evaluating the product. Specifically, the matrices Z_i
C are computed, such that
C
C Z_1' * H_1 * Z_2 = T_1,
C Z_2' * H_2 * Z_3 = T_2,
C ...
C Z_p' * H_p * Z_1 = T_p,
C
C where T_1 is in real Schur form, and T_2, ..., T_p are upper
C triangular.
C
C The routine works primarily with the Hessenberg and triangular
C submatrices in rows and columns ILO to IHI, but optionally applies
C the transformations to all the rows and columns of the matrices
C H_i, i = 1,...,p. The transformations can be optionally
C accumulated.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Indicates whether the user wishes to compute the full
C Schur form or the eigenvalues only, as follows:
C = 'E': Compute the eigenvalues only;
C = 'S': Compute the factors T_1, ..., T_p of the full
C Schur form, T = T_1*T_2*...*T_p.
C
C COMPZ CHARACTER*1
C Indicates whether or not the user wishes to accumulate
C the matrices Z_1, ..., Z_p, as follows:
C = 'N': The matrices Z_1, ..., Z_p are not required;
C = 'I': Z_i is initialized to the unit matrix and the
C orthogonal transformation matrix Z_i is returned,
C i = 1, ..., p;
C = 'V': Z_i must contain an orthogonal matrix Q_i on
C entry, and the product Q_i*Z_i is returned,
C i = 1, ..., p.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix H. N >= 0.
C
C P (input) INTEGER
C The number of matrices in the product H_1*H_2*...*H_p.
C P >= 1.
C
C ILO (input) INTEGER
C IHI (input) INTEGER
C It is assumed that all matrices H_j, j = 2, ..., p, are
C already upper triangular in rows and columns 1:ILO-1 and
C IHI+1:N, and H_1 is upper quasi-triangular in rows and
C columns 1:ILO-1 and IHI+1:N, with H_1(ILO,ILO-1) = 0
C (unless ILO = 1), and H_1(IHI+1,IHI) = 0 (unless IHI = N).
C The routine works primarily with the Hessenberg submatrix
C in rows and columns ILO to IHI, but applies the
C transformations to all the rows and columns of the
C matrices H_i, i = 1,...,p, if JOB = 'S'.
C 1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C ILOZ (input) INTEGER
C IHIZ (input) INTEGER
C Specify the rows of Z to which the transformations must be
C applied if COMPZ = 'I' or COMPZ = 'V'.
C 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
C
C H (input/output) DOUBLE PRECISION array, dimension
C (LDH1,LDH2,P)
C On entry, the leading N-by-N part of H(*,*,1) must contain
C the upper Hessenberg matrix H_1 and the leading N-by-N
C part of H(*,*,j) for j > 1 must contain the upper
C triangular matrix H_j, j = 2, ..., p.
C On exit, if JOB = 'S', the leading N-by-N part of H(*,*,1)
C is upper quasi-triangular in rows and columns ILO:IHI,
C with any 2-by-2 diagonal blocks corresponding to a pair of
C complex conjugated eigenvalues, and the leading N-by-N
C part of H(*,*,j) for j > 1 contains the resulting upper
C triangular matrix T_j.
C If JOB = 'E', the contents of H are unspecified on exit.
C
C LDH1 INTEGER
C The first leading dimension of the array H.
C LDH1 >= max(1,N).
C
C LDH2 INTEGER
C The second leading dimension of the array H.
C LDH2 >= max(1,N).
C
C Z (input/output) DOUBLE PRECISION array, dimension
C (LDZ1,LDZ2,P)
C On entry, if COMPZ = 'V', the leading N-by-N-by-P part of
C this array must contain the current matrix Q of
C transformations accumulated by SLICOT Library routine
C MB03VY.
C If COMPZ = 'I', Z need not be set on entry.
C On exit, if COMPZ = 'V', or COMPZ = 'I', the leading
C N-by-N-by-P part of this array contains the transformation
C matrices which produced the Schur form; the
C transformations are applied only to the submatrices
C Z_j(ILOZ:IHIZ,ILO:IHI), j = 1, ..., P.
C If COMPZ = 'N', Z is not referenced.
C
C LDZ1 INTEGER
C The first leading dimension of the array Z.
C LDZ1 >= 1, if COMPZ = 'N';
C LDZ1 >= max(1,N), if COMPZ = 'I' or COMPZ = 'V'.
C
C LDZ2 INTEGER
C The second leading dimension of the array Z.
C LDZ2 >= 1, if COMPZ = 'N';
C LDZ2 >= max(1,N), if COMPZ = 'I' or COMPZ = 'V'.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C The real and imaginary parts, respectively, of the
C computed eigenvalues ILO to IHI are stored in the
C corresponding elements of WR and WI. If two eigenvalues
C are computed as a complex conjugate pair, they are stored
C in consecutive elements of WR and WI, say the i-th and
C (i+1)th, with WI(i) > 0 and WI(i+1) < 0. If JOB = 'S', the
C eigenvalues are stored in the same order as on the
C diagonal of the Schur form returned in H.
C
C Workspace
C
C DWORK DOUBLE PRECISION work array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= IHI-ILO+P-1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, ILO <= i <= IHI, the QR algorithm
C failed to compute all the eigenvalues ILO to IHI
C in a total of 30*(IHI-ILO+1) iterations;
C the elements i+1:IHI of WR and WI contain those
C eigenvalues which have been successfully computed.
C
C METHOD
C
C A refined version of the QR algorithm proposed in [1] and [2] is
C used. The elements of the subdiagonal, diagonal, and the first
C supradiagonal of current principal submatrix of H are computed
C in the process.
C
C REFERENCES
C
C [1] Bojanczyk, A.W., Golub, G. and Van Dooren, P.
C The periodic Schur decomposition: algorithms and applications.
C Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C 1992.
C
C [2] Sreedhar, J. and Van Dooren, P.
C Periodic Schur form and some matrix equations.
C Proc. of the Symposium on the Mathematical Theory of Networks
C and Systems (MTNS'93), Regensburg, Germany (U. Helmke,
C R. Mennicken and J. Saurer, Eds.), Vol. 1, pp. 339-362, 1994.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically stable.
C
C FURTHER COMMENTS
C
C Note that for P = 1, the LAPACK Library routine DHSEQR could be
C more efficient on some computer architectures than this routine,
C because DHSEQR uses a block multishift QR algorithm.
C When P is large and JOB = 'S', it could be more efficient to
C compute the product matrix H, and use the LAPACK Library routines.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, and A. Varga,
C German Aerospace Center, DLR Oberpfaffenhofen, February 1999.
C Partly based on the routine PSHQR by A. Varga
C (DLR Oberpfaffenhofen), January 22, 1996.
C
C REVISIONS
C
C Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C
C KEYWORDS
C
C Eigenvalue, eigenvalue decomposition, Hessenberg form,
C orthogonal transformation, periodic systems, (periodic) Schur
C form, real Schur form, similarity transformation, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
DOUBLE PRECISION DAT1, DAT2
PARAMETER ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER COMPZ, JOB
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH1, LDH2, LDWORK,
$ LDZ1, LDZ2, N, P
C ..
C .. Array Arguments ..
DOUBLE PRECISION DWORK( * ), H( LDH1, LDH2, * ), WI( * ),
$ WR( * ), Z( LDZ1, LDZ2, * )
C ..
C .. Local Scalars ..
LOGICAL INITZ, WANTT, WANTZ
INTEGER I, I1, I2, ITN, ITS, J, JMAX, JMIN, K, L, M,
$ NH, NR, NROW, NZ
DOUBLE PRECISION AVE, CS, DISC, H11, H12, H21, H22, H33, H33S,
$ H43H34, H44, H44S, HH10, HH11, HH12, HH21, HH22,
$ HP00, HP01, HP02, HP11, HP12, HP22, OVFL, S,
$ SMLNUM, SN, TAU, TST1, ULP, UNFL, V1, V2, V3
C ..
C .. Local Arrays ..
DOUBLE PRECISION V( 3 )
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANHS, DLANTR
EXTERNAL DLAMCH, DLANHS, DLANTR, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DLARFX, DLARTG,
$ DLASET, DROT, MB04PY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SIGN, SQRT
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
WANTT = LSAME( JOB, 'S' )
INITZ = LSAME( COMPZ, 'I' )
WANTZ = LSAME( COMPZ, 'V' ) .OR. INITZ
INFO = 0
IF( .NOT. ( WANTT .OR. LSAME( JOB, 'E' ) ) ) THEN
INFO = -1
ELSE IF( .NOT. ( WANTZ .OR. LSAME( COMPZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.1 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -6
ELSE IF( ILOZ.LT.1 .OR. ILOZ.GT.ILO ) THEN
INFO = -7
ELSE IF( IHIZ.LT.IHI .OR. IHIZ.GT.N ) THEN
INFO = -8
ELSE IF( LDH1.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDH2.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDZ1.LT.1 .OR. ( WANTZ .AND. LDZ1.LT.N ) ) THEN
INFO = -13
ELSE IF( LDZ2.LT.1 .OR. ( WANTZ .AND. LDZ2.LT.N ) ) THEN
INFO = -14
ELSE IF( LDWORK.LT.IHI - ILO + P - 1 ) THEN
INFO = -18
END IF
IF( INFO.EQ.0 ) THEN
IF( ILO.GT.1 ) THEN
IF( H( ILO, ILO-1, 1 ).NE.ZERO )
$ INFO = -5
ELSE IF( IHI.LT.N ) THEN
IF( H( IHI+1, IHI, 1 ).NE.ZERO )
$ INFO = -6
END IF
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03WD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 )
$ RETURN
C
C Initialize Z, if necessary.
C
IF( INITZ ) THEN
C
DO 10 J = 1, P
CALL DLASET( 'Full', N, N, ZERO, ONE, Z( 1, 1, J ), LDZ1 )
10 CONTINUE
C
END IF
C
NH = IHI - ILO + 1
C
IF( NH.EQ.1 ) THEN
HP00 = ONE
C
DO 20 J = 1, P
HP00 = HP00 * H( ILO, ILO, J )
20 CONTINUE
C
WR( ILO ) = HP00
WI( ILO ) = ZERO
RETURN
END IF
C
C Set machine-dependent constants for the stopping criterion.
C If norm(H) <= sqrt(OVFL), overflow should not occur.
C
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( DBLE( NH ) / ULP )
C
C Set the elements in rows and columns ILO to IHI to zero below the
C first subdiagonal in H(*,*,1) and below the first diagonal in
C H(*,*,j), j >= 2. In the same loop, compute and store in
C DWORK(NH:NH+P-2) the 1-norms of the matrices H_2, ..., H_p, to be
C used later.
C
I = NH
S = ULP * DBLE( N )
IF( NH.GT.2 )
$ CALL DLASET( 'Lower', NH-2, NH-2, ZERO, ZERO,
$ H( ILO+2, ILO, 1 ), LDH1 )
C
DO 30 J = 2, P
CALL DLASET( 'Lower', NH-1, NH-1, ZERO, ZERO,
$ H( ILO+1, ILO, J ), LDH1 )
DWORK( I ) = S * DLANTR( '1-norm', 'Upper', 'NonUnit', NH, NH,
$ H( ILO, ILO, J ), LDH1, DWORK )
I = I + 1
30 CONTINUE
C
C I1 and I2 are the indices of the first row and last column of H
C to which transformations must be applied. If eigenvalues only are
C being computed, I1 and I2 are set inside the main loop.
C
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
C
IF( WANTZ )
$ NZ = IHIZ - ILOZ + 1
C
C ITN is the total number of QR iterations allowed.
C
ITN = 30*NH
C
C The main loop begins here. I is the loop index and decreases from
C IHI to ILO in steps of 1 or 2. Each iteration of the loop works
C with the active submatrix in rows and columns L to I.
C Eigenvalues I+1 to IHI have already converged. Either L = ILO or
C H(L,L-1) is negligible so that the matrix splits.
C
I = IHI
C
40 CONTINUE
L = ILO
C
C Perform QR iterations on rows and columns ILO to I until a
C submatrix of order 1 or 2 splits off at the bottom because a
C subdiagonal element has become negligible.
C
C Let T = H_2*...*H_p, and H = H_1*T. Part of the currently
C free locations of WR and WI are temporarily used as workspace.
C
C WR(L:I): the current diagonal elements of h = H(L:I,L:I);
C WI(L+1:I): the current elements of the first subdiagonal of h;
C DWORK(NH-I+L:NH-1): the current elements of the first
C supradiagonal of h.
C
DO 160 ITS = 0, ITN
C
C Initialization: compute H(I,I) (and H(I,I-1) if I > L).
C
HP22 = ONE
IF( I.GT.L ) THEN
HP12 = ZERO
HP11 = ONE
C
DO 50 J = 2, P
HP22 = HP22*H( I, I, J )
HP12 = HP11*H( I-1, I, J ) + HP12*H( I, I, J )
HP11 = HP11*H( I-1, I-1, J )
50 CONTINUE
C
HH21 = H( I, I-1, 1 )*HP11
HH22 = H( I, I-1, 1 )*HP12 + H( I, I, 1 )*HP22
C
WR( I ) = HH22
WI( I ) = HH21
ELSE
C
DO 60 J = 1, P
HP22 = HP22*H( I, I, J )
60 CONTINUE
C
WR( I ) = HP22
END IF
C
C Look for a single small subdiagonal element.
C The loop also computes the needed current elements of the
C diagonal and the first two supradiagonals of T, as well as
C the current elements of the central tridiagonal of H.
C
DO 80 K = I, L + 1, -1
C
C Evaluate H(K-1,K-1), H(K-1,K) (and H(K-1,K-2) if K > L+1).
C
HP00 = ONE
HP01 = ZERO
IF( K.GT.L+1 ) THEN
HP02 = ZERO
C
DO 70 J = 2, P
HP02 = HP00*H( K-2, K, J ) + HP01*H( K-1, K, J )
$ + HP02*H( K, K, J )
HP01 = HP00*H( K-2, K-1, J ) + HP01*H( K-1, K-1, J )
HP00 = HP00*H( K-2, K-2, J )
70 CONTINUE
C
HH10 = H( K-1, K-2, 1 )*HP00
HH11 = H( K-1, K-2, 1 )*HP01 + H( K-1, K-1, 1 )*HP11
HH12 = H( K-1, K-2, 1 )*HP02 + H( K-1, K-1, 1 )*HP12
$ + H( K-1, K, 1 )*HP22
WI( K-1 ) = HH10
ELSE
HH10 = ZERO
HH11 = H( K-1, K-1, 1 )*HP11
HH12 = H( K-1, K-1, 1 )*HP12 + H( K-1, K, 1 )*HP22
END IF
WR( K-1 ) = HH11
DWORK( NH-I+K-1) = HH12
C
C Test for a negligible subdiagonal element.
C
TST1 = ABS( HH11 ) + ABS( HH22 )
IF( TST1.EQ.ZERO )
$ TST1 = DLANHS( '1-norm', I-L+1, H( L, L, 1 ), LDH1,
$ DWORK )
IF( ABS( HH21 ).LE.MAX( ULP*TST1, SMLNUM ) )
$ GO TO 90
C
C Update the values for the next cycle.
C
HP22 = HP11
HP11 = HP00
HP12 = HP01
HH22 = HH11
HH21 = HH10
80 CONTINUE
C
90 CONTINUE
L = K
C
IF( L.GT.ILO ) THEN
C
C H(L,L-1) is negligible.
C
IF( WANTT ) THEN
C
C If H(L,L-1,1) is also negligible, set it to 0; otherwise,
C annihilate the subdiagonal elements bottom-up, and
C restore the triangular form of H(*,*,j). Since H(L,L-1)
C is negligible, the second case can only appear when the
C product of H(L-1,L-1,j), j >= 2, is negligible.
C
TST1 = ABS( H( L-1, L-1, 1 ) ) + ABS( H( L, L, 1 ) )
IF( TST1.EQ.ZERO )
$ TST1 = DLANHS( '1-norm', I-L+1, H( L, L, 1 ), LDH1,
$ DWORK )
IF( ABS( H( L, L-1, 1 ) ).GT.MAX( ULP*TST1, SMLNUM ) )
$ THEN
C
DO 110 K = I, L, -1
C
DO 100 J = 1, P - 1
C
C Compute G to annihilate from the right the
C (K,K-1) element of the matrix H_j.
C
V( 1 ) = H( K, K-1, J )
CALL DLARFG( 2, H( K, K, J ), V, 1, TAU )
H( K, K-1, J ) = ZERO
V( 2 ) = ONE
C
C Apply G from the right to transform the columns
C of the matrix H_j in rows I1 to K-1.
C
CALL DLARFX( 'Right', K-I1, 2, V, TAU,
$ H( I1, K-1, J ), LDH1, DWORK )
C
C Apply G from the left to transform the rows of
C the matrix H_(j+1) in columns K-1 to I2.
C
CALL DLARFX( 'Left', 2, I2-K+2, V, TAU,
$ H( K-1, K-1, J+1 ), LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix
C Z_(j+1).
C
CALL DLARFX( 'Right', NZ, 2, V, TAU,
$ Z( ILOZ, K-1, J+1 ), LDZ1,
$ DWORK )
END IF
100 CONTINUE
C
IF( K.LT.I ) THEN
C
C Compute G to annihilate from the right the
C (K+1,K) element of the matrix H_p.
C
V( 1 ) = H( K+1, K, P )
CALL DLARFG( 2, H( K+1, K+1, P ), V, 1, TAU )
H( K+1, K, P ) = ZERO
V( 2 ) = ONE
C
C Apply G from the right to transform the columns
C of the matrix H_p in rows I1 to K.
C
CALL DLARFX( 'Right', K-I1+1, 2, V, TAU,
$ H( I1, K, P ), LDH1, DWORK )
C
C Apply G from the left to transform the rows of
C the matrix H_1 in columns K to I2.
C
CALL DLARFX( 'Left', 2, I2-K+1, V, TAU,
$ H( K, K, 1 ), LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix Z_1.
C
CALL DLARFX( 'Right', NZ, 2, V, TAU,
$ Z( ILOZ, K, 1 ), LDZ1, DWORK )
END IF
END IF
110 CONTINUE
C
H( L, L-1, P ) = ZERO
END IF
H( L, L-1, 1 ) = ZERO
END IF
END IF
C
C Exit from loop if a submatrix of order 1 or 2 has split off.
C
IF( L.GE.I-1 )
$ GO TO 170
C
C Now the active submatrix is in rows and columns L to I. If
C eigenvalues only are being computed, only the active submatrix
C need be transformed.
C
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
C
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
C
C Exceptional shift.
C
S = ABS( WI( I ) ) + ABS( WI( I-1 ) )
H44 = DAT1*S + WR( I )
H33 = H44
H43H34 = DAT2*S*S
ELSE
C
C Prepare to use Francis' double shift (i.e., second degree
C generalized Rayleigh quotient).
C
H44 = WR( I )
H33 = WR( I-1 )
H43H34 = WI( I )*DWORK( NH-1 )
DISC = ( H33 - H44 )*HALF
DISC = DISC*DISC + H43H34
IF( DISC.GT.ZERO ) THEN
C
C Real roots: use Wilkinson's shift twice.
C
DISC = SQRT( DISC )
AVE = HALF*( H33 + H44 )
IF( ABS( H33 )-ABS( H44 ).GT.ZERO ) THEN
H33 = H33*H44 - H43H34
H44 = H33 / ( SIGN( DISC, AVE ) + AVE )
ELSE
H44 = SIGN( DISC, AVE ) + AVE
END IF
H33 = H44
H43H34 = ZERO
END IF
END IF
C
C Look for two consecutive small subdiagonal elements.
C
DO 120 M = I - 2, L, -1
C
C Determine the effect of starting the double-shift QR
C iteration at row M, and see if this would make H(M,M-1)
C negligible.
C
H11 = WR( M )
H12 = DWORK( NH-I+M )
H21 = WI( M+1 )
H22 = WR( M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S - H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = WI( M+2 )
S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S
V2 = V2 / S
V3 = V3 / S
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
IF( M.EQ.L )
$ GO TO 130
TST1 = ABS( V1 )*( ABS( WR( M-1 ) ) +
$ ABS( H11 ) + ABS( H22 ) )
IF( ABS( WI( M ) )*( ABS( V2 ) + ABS( V3 ) ).LE.ULP*TST1 )
$ GO TO 130
120 CONTINUE
C
130 CONTINUE
C
C Double-shift QR step.
C
DO 150 K = M, I - 1
C
C The first iteration of this loop determines a reflection G
C from the vector V and applies it from left and right to H,
C thus creating a nonzero bulge below the subdiagonal.
C
C Each subsequent iteration determines a reflection G to
C restore the Hessenberg form in the (K-1)th column, and thus
C chases the bulge one step toward the bottom of the active
C submatrix. NR is the order of G.
C
NR = MIN( 3, I-K+1 )
NROW = MIN( K+NR, I ) - I1 + 1
IF( K.GT.M )
$ CALL DCOPY( NR, H( K, K-1, 1 ), 1, V, 1 )
CALL DLARFG( NR, V( 1 ), V( 2 ), 1, TAU )
IF( K.GT.M ) THEN
H( K, K-1, 1 ) = V( 1 )
H( K+1, K-1, 1 ) = ZERO
IF( K.LT.I-1 )
$ H( K+2, K-1, 1 ) = ZERO
ELSE IF( M.GT.L ) THEN
H( K, K-1, 1 ) = -H( K, K-1, 1 )
END IF
C
C Apply G from the left to transform the rows of the matrix
C H_1 in columns K to I2.
C
CALL MB04PY( 'Left', NR, I2-K+1, V( 2 ), TAU, H( K, K, 1 ),
$ LDH1, DWORK )
C
C Apply G from the right to transform the columns of the
C matrix H_p in rows I1 to min(K+NR,I).
C
CALL MB04PY( 'Right', NROW, NR, V( 2 ), TAU, H( I1, K, P ),
$ LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix Z_1.
C
CALL MB04PY( 'Right', NZ, NR, V( 2 ), TAU,
$ Z( ILOZ, K, 1 ), LDZ1, DWORK )
END IF
C
DO 140 J = P, 2, -1
C
C Apply G1 (and G2, if NR = 3) from the left to transform
C the NR-by-NR submatrix of H_j in position (K,K) to upper
C triangular form.
C
C Compute G1.
C
CALL DCOPY( NR-1, H( K+1, K, J ), 1, V, 1 )
CALL DLARFG( NR, H( K, K, J ), V, 1, TAU )
H( K+1, K, J ) = ZERO
IF( NR.EQ.3 )
$ H( K+2, K, J ) = ZERO
C
C Apply G1 from the left to transform the rows of the
C matrix H_j in columns K+1 to I2.
C
CALL MB04PY( 'Left', NR, I2-K, V, TAU, H( K, K+1, J ),
$ LDH1, DWORK )
C
C Apply G1 from the right to transform the columns of the
C matrix H_(j-1) in rows I1 to min(K+NR,I).
C
CALL MB04PY( 'Right', NROW, NR, V, TAU, H( I1, K, J-1 ),
$ LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix Z_j.
C
CALL MB04PY( 'Right', NZ, NR, V, TAU, Z( ILOZ, K, J ),
$ LDZ1, DWORK )
END IF
C
IF( NR.EQ.3 ) THEN
C
C Compute G2.
C
V( 1 ) = H( K+2, K+1, J )
CALL DLARFG( 2, H( K+1, K+1, J ), V, 1, TAU )
H( K+2, K+1, J ) = ZERO
C
C Apply G2 from the left to transform the rows of the
C matrix H_j in columns K+2 to I2.
C
CALL MB04PY( 'Left', 2, I2-K-1, V, TAU,
$ H( K+1, K+2, J ), LDH1, DWORK )
C
C Apply G2 from the right to transform the columns of
C the matrix H_(j-1) in rows I1 to min(K+3,I).
C
CALL MB04PY( 'Right', NROW, 2, V, TAU,
$ H( I1, K+1, J-1 ), LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix Z_j.
C
CALL MB04PY( 'Right', NZ, 2, V, TAU,
$ Z( ILOZ, K+1, J ), LDZ1, DWORK )
END IF
END IF
140 CONTINUE
C
150 CONTINUE
C
160 CONTINUE
C
C Failure to converge in remaining number of iterations.
C
INFO = I
RETURN
C
170 CONTINUE
C
IF( L.EQ.I ) THEN
C
C H(I,I-1,1) is negligible: one eigenvalue has converged.
C Note that WR(I) has already been set.
C
WI( I ) = ZERO
ELSE IF( L.EQ.I-1 ) THEN
C
C H(I-1,I-2,1) is negligible: a pair of eigenvalues have
C converged.
C
C Transform the 2-by-2 submatrix of H_1*H_2*...*H_p in position
C (I-1,I-1) to standard Schur form, and compute and store its
C eigenvalues. If the Schur form is not required, then the
C previously stored values of a similar submatrix are used.
C For real eigenvalues, a Givens transformation is used to
C triangularize the submatrix.
C
IF( WANTT ) THEN
HP22 = ONE
HP12 = ZERO
HP11 = ONE
C
DO 180 J = 2, P
HP22 = HP22*H( I, I, J )
HP12 = HP11*H( I-1, I, J ) + HP12*H( I, I, J )
HP11 = HP11*H( I-1, I-1, J )
180 CONTINUE
C
HH21 = H( I, I-1, 1 )*HP11
HH22 = H( I, I-1, 1 )*HP12 + H( I, I, 1 )*HP22
HH11 = H( I-1, I-1, 1 )*HP11
HH12 = H( I-1, I-1, 1 )*HP12 + H( I-1, I, 1 )*HP22
ELSE
HH11 = WR( I-1 )
HH12 = DWORK( NH-1 )
HH21 = WI( I )
HH22 = WR( I )
END IF
C
CALL DLANV2( HH11, HH12, HH21, HH22, WR( I-1 ), WI( I-1 ),
$ WR( I ), WI( I ), CS, SN )
C
IF( WANTT ) THEN
C
C Detect negligible diagonal elements in positions (I-1,I-1)
C and (I,I) in H_j, J > 1.
C
JMIN = 0
JMAX = 0
C
DO 190 J = 2, P
IF( JMIN.EQ.0 ) THEN
IF( ABS( H( I-1, I-1, J ) ).LE.DWORK( NH+J-2 ) )
$ JMIN = J
END IF
IF( ABS( H( I, I, J ) ).LE.DWORK( NH+J-2 ) ) JMAX = J
190 CONTINUE
C
IF( JMIN.NE.0 .AND. JMAX.NE.0 ) THEN
C
C Choose the shorter path if zero elements in both
C (I-1,I-1) and (I,I) positions are present.
C
IF( JMIN-1.LE.P-JMAX+1 ) THEN
JMAX = 0
ELSE
JMIN = 0
END IF
END IF
C
IF( JMIN.NE.0 ) THEN
C
DO 200 J = 1, JMIN - 1
C
C Compute G to annihilate from the right the (I,I-1)
C element of the matrix H_j.
C
V( 1 ) = H( I, I-1, J )
CALL DLARFG( 2, H( I, I, J ), V, 1, TAU )
H( I, I-1, J ) = ZERO
V( 2 ) = ONE
C
C Apply G from the right to transform the columns of the
C matrix H_j in rows I1 to I-1.
C
CALL DLARFX( 'Right', I-I1, 2, V, TAU,
$ H( I1, I-1, J ), LDH1, DWORK )
C
C Apply G from the left to transform the rows of the
C matrix H_(j+1) in columns I-1 to I2.
C
CALL DLARFX( 'Left', 2, I2-I+2, V, TAU,
$ H( I-1, I-1, J+1 ), LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Accumulate transformations in the matrix Z_(j+1).
C
CALL DLARFX( 'Right', NZ, 2, V, TAU,
$ Z( ILOZ, I-1, J+1 ), LDZ1, DWORK )
END IF
200 CONTINUE
C
H( I, I-1, JMIN ) = ZERO
C
ELSE
IF( JMAX.GT.0 .AND. WI( I-1 ).EQ.ZERO )
$ CALL DLARTG( H( I-1, I-1, 1 ), H( I, I-1, 1 ), CS, SN,
$ TAU )
C
C Apply the transformation to H.
C
CALL DROT( I2-I+2, H( I-1, I-1, 1 ), LDH1,
$ H( I, I-1, 1 ), LDH1, CS, SN )
CALL DROT( I-I1+1, H( I1, I-1, P ), 1, H( I1, I, P ), 1,
$ CS, SN )
IF( WANTZ ) THEN
C
C Apply transformation to Z_1.
C
CALL DROT( NZ, Z( ILOZ, I-1, 1 ), 1, Z( ILOZ, I, 1 ),
$ 1, CS, SN )
END IF
C
DO 210 J = P, MAX( 2, JMAX+1 ), -1
C
C Compute G1 to annihilate from the left the (I,I-1)
C element of the matrix H_j.
C
V( 1 ) = H( I, I-1, J )
CALL DLARFG( 2, H( I-1, I-1, J ), V, 1, TAU )
H( I, I-1, J ) = ZERO
C
C Apply G1 from the left to transform the rows of the
C matrix H_j in columns I to I2.
C
CALL MB04PY( 'Left', 2, I2-I+1, V, TAU,
$ H( I-1, I, J ), LDH1, DWORK )
C
C Apply G1 from the right to transform the columns of
C the matrix H_(j-1) in rows I1 to I.
C
CALL MB04PY( 'Right', I-I1+1, 2, V, TAU,
$ H( I1, I-1, J-1 ), LDH1, DWORK )
C
IF( WANTZ ) THEN
C
C Apply G1 to Z_j.
C
CALL MB04PY( 'Right', NZ, 2, V, TAU,
$ Z( ILOZ, I-1, J ), LDZ1, DWORK )
END IF
210 CONTINUE
C
IF( JMAX.GT.0 ) THEN
H( I, I-1, 1 ) = ZERO
H( I, I-1, JMAX ) = ZERO
ELSE
IF( HH21.EQ.ZERO )
$ H( I, I-1, 1 ) = ZERO
END IF
END IF
END IF
END IF
C
C Decrement number of remaining iterations, and return to start of
C the main loop with new value of I.
C
ITN = ITN - ITS
I = L - 1
IF( I.GE.ILO )
$ GO TO 40
C
RETURN
C
C *** Last line of MB03WD ***
END
|